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Abstract: Pulse-front tilt in an ultrashort laser pulse is generally considered 
to be a direct consequence of, and equivalent to, angular dispersion.  We 
show, however, that, while this is true for certain types of pulse fields, 
simultaneous temporal chirp and spatial chirp also yield pulse-front tilt, 
even in the absence of angular dispersion.  We verify this effect 
experimentally using GRENOUILLE. 
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1. Introduction 

The space and time dependences of an ultrashort pulse’s electric field are often assumed to be 
separable into independent functions.  This assumption fails when coupling occurs between 
the pulse electric field’s space and time dependences, and this is referred to as a spatio-
temporal distortion.  Such distortions are common in ultrafast optics because the generation, 
amplification, and manipulation of ultrashort pulses all involve the deliberate introduction and 
(it is hoped) subsequent removal of massive spatio-temporal distortions.  While it is generally 
desired that the resulting pulse be free of such distortions, improper alignment is common, 
and as a result, ultrashort pulses are often contaminated with spatio-temporal distortions.  
Indeed, the broadband nature of ultrashort pulses makes them particularly vulnerable to these 
distortions. When such pulses are utilized in applications, these distortions often erode 
temporal resolution, reduce intensity, and cause a wide range of other problems. 

The most common such distortion is angular dispersion (AD), which is usually 
deliberately caused by the use of a dispersive element such as a prism or grating.  AD is 
useful because it yields negative group-velocity dispersion [1-3], and inverted prism and/or 
grating pairs act as pulse compressors/stretchers. After the second prism or grating, AD is 
usually zero, but another spatio-temporal distortion remains—spatial chirp (SC)—in which 
the frequency varies transversely across the beam. Propagation through another inverted pair 
of prisms or gratings removes the spatial chirp, and in theory, both the resulting AD and SC 
are then zero. Unfortunately, these devices (and most other devices involving such elements) 
have strict alignment requirements, and, as a result, some residual AD and/or SC often remain 
in the output pulse.   

Angular dispersion also yields another spatio-temporal distortion:  pulse-front tilt (PFT) 
(see Fig. 1 left).  In fact, it is generally thought that AD and PFT are equivalent phenomena.  
This was proved using geometrical ray-tracing by Bor et al. [4] and Hebling [5], in which 
plane waves are always considered. Another more general proof using Fourier transform was 
given by Dorrer et al. [6]. Specifically, a beam with pulse-front tilt can be written as: 

( ) ( ) ( ), , ,xz tE x z t E x z E t px= −                                         (1) 

where p is the PFT. We have suppressed the y-dependence and assumed that, apart from PFT, 

( ), ,E x z t  has no coupling of its coordinates, so it can be separated into ( ),xzE x z  and ( )E t .  

(This is a more rigorous expression than that given in Ref. [6].)  Simply Fourier-transforming 
from the x-t domain to the k-ω domain and using two applications of the Shift Theorem, we 
have: 

( ) ( ) ( )ˆ ˆ ˆ, , ,
x zx z k k x zE k k E k p k Eωω ω ω= −� � �                                     (2) 

which is a beam with AD.  Specifically, d dxk pω = , or the AD is 0 0d d p kθ ω = , where 

0θ  is the propagation angle, and 0k  is the nominal wave-number in vacuum. 
While the above proof seems quite fundamental, we show in this work that angular 

dispersion and pulse-front tilt are not equivalent, and we provide an additional (and rather 
common!) source of pulse-front tilt, in which no angular dispersion occurs.  We point out that 
the “proof” of AD/PFT equivalence only holds for fields of the above form, and our counter-
example incorporates a beam with spatial chirp, which cannot be written in the above form.  
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Specifically, to see how PFT can easily occur in the absence of AD, consider an initially 
transform-limited, but spatially chirped, finite-size beam—with no angular dispersion—
passing through a dispersive medium (see Fig. 1, right).  Due to the group-velocity dispersion 
in the medium, the redder side of the beam emerges from the medium earlier than the bluer 
side, resulting in PFT in the output beam.  Because no AD exists, this obviously violates the 
well-known AD/PFT equivalence.  

  

 
Fig. 1.  Two sources of pulse-front tilt.  Left: The well-known angular dispersion.  
Right: The combination of spatial and temporal chirp. 

 
Previous work has considered PFT and AD.  Geometrical-optical modeling of AD in 

ultrashort pulses was performed using plane waves [7].  Bor and Racz [8] showed that 
position-dependent delays of the pulse front occur at the output of a two-prism pulse 
compressor, but they did not note the violation of the AD/PFT equivalence.  The most 
comprehensive work on spatio-temporal distortions with dispersive elements is that of 
Martinez [9], who considered PFT in an angularly dispersed beam with finite beam size.  
Martinez derived the modified expression of PFT in this case, but did not appear to realize 
that his finite-beam correction is indeed due to the combined effect of temporal chirp and 
spatial chirp, both results of beam propagation with AD.  

2. AD and PFT in the presence of SC 

We model both of the effects in Fig. 1 using an expression in the x-ω domain for the electric 
field of a pulse with linear SC and AD.  

( ) ( ) ( ) ( )
2

0, exp i exp i
2

k x
E x E k x

q

ζω
ω ω βω

 −
= − − 

  

                           (3) 

where 0k  is the nominal wave-number, ω  is the offset from the center angular frequency, 

and q  is the complex q  parameter of a Gaussian beam: 

( ) ( ) ( )
22

0π

i i
2

k ww
q z z d z d

λ
= + + = + +                                  (4) 
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where d is the position of the beam waist and w is the spot size.  The SC and AD are 

parameterized by 0d

d

xζ
ω

≡  and 0d

d

θβ
ω

≡  respectively, where 0x  is the beam center position 

of the ω -component of the beam and 0θ  is the propagation angle of this component. 
Throughout this work, we concentrate on spatio-temporal distortions in the x-direction 

only and therefore neglect the beam’s y-dependence.  Generalization to both x and y 
dependences is straightforward.  

We assume a Gaussian spectrum with linear chirp: 

 ( )
( )22 2

20
0 exp exp i

4 2
E E

ω τ ϕω ω
  

= − −    
   

                                (5) 

For a well collimated beam, we can write: 

 ( ) ( )
2

0 i
2

kw
q z q d≈ =                                                (6) 

Using these expressions, Eq. (3) becomes 

 ( ) ( ) ( )
( )

2 22 2
20

0 02
, exp exp exp i exp i

4 2

x
E x E k x

w

ζωω τ ϕω ω βω
   − 

= − − − −           

        (7) 

 Here, we would like to point out, as shown in Ref. [10], there are two related, but 
different, definitions of spatial chirp.  We can either define spatial chirp as the spatial 

dispersion 0d

d

xζ
ω

≡ , where 0x  is the beam center position of the ω -component, or 

equivalently define it as the frequency gradient 0d

dx

ωυ ≡ , where 0ω  is the mean frequency at 

position x .  These quantities are not reciprocals of each other, and the relationship between 
ζ  and υ  for Gaussian pulses and beams is 

 
2 2

2 0

4

w

ζυ
τζ

=
+

                                                   (8) 

 
Using the frequency gradient υ , Eq. (7) may be rewritten as 

 ( ) ( ) ( )
( )

( )
22 2

2 2
0 0, exp exp exp i exp i

4 2

x
E x E x k x

w

τ ϕω ω υ ω βω
   ′   = − − − − −       ′         

   (9) 

where 
1

2 2 2
0

2

1

4
w

w

υ τ
−

 ′ = − 
 

 is the overall beam width, increased from w  due to spatial chirp, 

1
2 2

2
0 2

4

w

ζτ τ ′ = + 
 

 is the local transform-limited pulse width, increased from 0τ  due to 

the reduced locally available bandwidth. 
After some reorganizing, 
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( )
( )

( ) ( )
( )

( )

( )( ) ( )

2 2
2

0 0

2 2
2 2

2
0

, exp exp i
2

exp exp i
4 2

exp i

x
E x E k x

w

x x

k x x

ϕω β υ υ

τ ϕω υ ω υ

β ϕ υ ω υ

     = − − +       ′        

 ′  
× − − − −   

    

 × − + −
 

                            (10) 

The frequency dependence in Eq. (10) is familiar, namely a linearly chirped pulse, and can 
be easily inversely Fourier-transformed into the time domain: 

 ( ) ( ) ( ) ( ) ( )
( )

( )
2 2

210
0 0 02

, exp exp i
2

t t
E x t f x t t t t

φφ
τ

    −  = − − + −    
      

                (11) 

where:  

 ( ) ( )
( )2 21/ 22 2 2

2 0

1
i 2 exp exp i

π 2

x
f x E x

w

ϕτ ϕ υ
−      ′= + −        ′     

                    (12) 

 ( )( )2
0 0t k xβ ϕ υ= +                                                (13) 

 ( )
( )( )

( )

( )( )
1/ 2

1/ 22 2
2 2

2
2 2

02 2 2
2

0 2

4 44

4w

w

ϕ ϕζτ τ τ
ζτ τ

     ′= + = + +  ′  +     

                         (14) 

 ( )1 xφ υ=                                                      (15) 

 ( )
( )

( ) ( )( )

( )

( )( )

2 2
2

2 222 22 22
0 2

1 4
4 4

ϕ ϕφ
τ ζϕ τ ϕ

σ

= =
′  + + + 

 

                               (16) 

We identify 0t  as the pulse-front (maximum intensity contour) arrival time, and the PFT 

may be characterized by the derivative of 0t  with respect to x , 

 0d

d

t
p

x
≡                                                       (17) 

The PFT angle—the angle between the pulse front and the propagation direction z—is 
then given by 

 tan pcψ =                                                     (18) 

From Eq. (13), it is easy to see that, for an ultrashort-pulse beam with Gaussian spectrum 
and Gaussian spatial profile, the PFT is 

 AD SC+TCp p p= +                                                (19) 

where 

 AD 0p k β=                                                     (20) 
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 ( )2
SC+TCp ϕ υ=                                                 (21) 

This is the key result of this paper.  PFT, in general, consists of two terms.  The first term 

ADp  is the well known angular-dispersion term, as derived by Bor et al. [4] and Hebling [5].  

The second term SC+TCp  is a PFT effect caused by the combination of SC, which is 

characterized by the frequency gradient υ  and temporal chirp, which is characterized by 

group-delay dispersion ( )2ϕ .  This new PFT effect is clearly the cause of the PFT in the 
scenario shown in Fig. 1 (right), in which no AD exists. 

This additional source of PFT is not in violation of the proof in Section 1 that purports to 
show the equivalence of AD and PF. Equations (1)–(2), after all, are simply an exercise in 
Fourier transforms.  Rather, the proof of equivalence is simply not sufficiently general 
because the forms of Eqs. (1) and (2) specifically preclude the presence of SC in the pulse.  
Fourier transforming Eq. (1) with respect to t yields a field in the x-ω domain of the form: 

 ( ) ( ) ( ) ( ), , , exp ixzE x z E x z E pxωω ω ω= −� �                             (22) 

But the presence of SC in the form of spatial dispersion requires an expression in the x-ω 
domain of the form: 

 ( ) ( ) ( ) ( ), , , exp ixzE x z E x z E pxωω ζω ω ω= − −� �                         (23) 

that is, some additional coupling of x and ω beyond the simple complex exponential.  An 
example of this coupling is Eq. (3).  The presence of SC in the form of frequency gradient 
requires an expression in the x-ω domain of the form: 

 ( ) ( ) ( ) ( ), , , exp ixzE x z E x z E x pxωω ω υ ω= − −� �                         (24) 

Again, this requires coupling of x and ω beyond the simple complex exponential of Eq. (22). 
It is also important to note that these two sources of PFT have subtle physical effects on 

the pulse, beyond simply tilting the pulse front.  AD causes different frequency components to 
propagate at different angles, resulting in tilt of both the pulse fronts (contours of equal 
intensity) and the phase fronts (contours of equal phase).  On the other hand, simultaneous 
spatial and temporal chirp tilts the pulse front, while leaving phase fronts of constituent 
frequencies untilted.  This point is very important in the measurement of the two effects.  
Also, some techniques purport to measure PFT, but in fact measure AD, and vice versa. 

3. Propagation of ultrashort-pulse beams with angular dispersion and spatial chirp 

Equations (10) and (11) give the expressions of the electric field in frequency and time 
domains at a particular longitudinal position z0.  In this section, we propagate the field to an 
arbitrary position z, and discuss how the spatial-temporal coupling parameters, including SC 
and PFT, evolve.  To accomplish this, we use the Fresnel-Kirchoff integral formula [11]: 

 ( ) ( ) ( )2i i π
, , , , 0 exp dE x z E x z x x x

z z
ω ω

λ λ

∞

−∞

 ′ ′ ′= = − − 
 

∫                  (25) 

We start from an initial field at 0 0z = , 
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( ) ( ) ( ) ( )

( ) ( ) ( )

2

0 0
0

0

222 2
0 020 0

0 0
0

, , 0 , 0 exp i exp i
2

exp exp i exp i exp i
4 2 2

k x
E x z E z k x

q

k x
E k x

q

ζ ω
ω ω βω

ζ ωω τ ϕ ω βω

 −
= = = − − 

  

   − 
= − − − −            

 (26) 

Substituting Eq. (26) in Eq. (25), we obtain: 

 

( )
( )

( )
( ) ( ) ( )

( )
( )

( )

( )
( )

22 2
20 0 0

0

2
20 0

0 0 0

1/ 2 22 2
20 0 0

0

0 0

i
, , exp exp i

2π 4 2

i
exp i exp i exp d

2 0 2

0i
exp exp i

2π 4 2

0
exp i

2

k
E x z E

z

k x k
k x x x x

q z

qk
E

z q z

qk z x

q z z

ω τ ϕω ω

βω ζ ω ζ ω

ω τ ϕ ω

ζ ω

∞

−∞

  
= − −    

   

 ′  ′ ′ ′× − − + − + −      
   

    
= − −            

−
×

∫

( )22
02

0 0i
2

x
k

z

ζ ω
βω βζ ω

  −  − − +   
      

 (27) 

For a well collimated beam, we can write: 

 
( )
( )

2
0

2 2
0 0

i0 22 1 i

i
2

k w
dq z

q z k w k w
z d

+
= = +

+ +
                                (28) 

Equation (27) then simplifies to: 

 

( ) ( )( )
( ) ( )

1/ 21/ 2 2 2
2 2 20 0

0 0 02
0

2

0

02

i 2 i
, , 1 i exp exp

2π 4 2

exp exp i

k z
E x z E k z

z k w

x z
k x

w

ω τω ϕ β ω

ζ β ω
βω

      = + − − −            

 − +   × − − 
  

 (29) 

Note that this is exactly in the form of Eq. (7), with the spatial dispersion and group-delay 
dispersion parameters substituted by the z-evolved values: 

 ( ) 0z zζ ζ β= +                                                 (30) 

 ( ) ( ) ( )2 2 2
0 0z k zϕ ϕ β= −                                            (31) 

The physical meanings of these results are obvious.  Equation (30) describes the increase 
of spatial dispersion with propagation due to AD. As the pulse propagates, different colors in 
the pulse become increasingly separated from each other.  Equation (31) describes the 
introduction of negative group-delay dispersion (GDD) due to AD, which is the theoretical 
basis of pulse compressors.  Using the evolved values of spatial dispersion and GDD, the 
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results in the previous section can applied to obtain the evolution of other spatial-temporal 
coupling parameters, including frequency gradient υ  and PFT p :   

 ( )
( )

0
2 2

2 0
0 4

z
z

w
z

ζ βυ
τζ β

+
=

+ +
                                         (32) 

 ( )( ) ( )2 2
0 0 0p k k z zβ ϕ β υ= + −                                        (33) 

The generalized theory of spatio-temporal coupling in ultrashort-pulse beams can also be 
derived analogously using the matrix formalism introduced by A. G. Kostenbauder [12] (see 
Appendix).  

4. Experiment  

In the previous sections, we showed that simultaneous spatial and temporal chirp cause PFT, 
even in the absence of AD.  In this section, we describe an experimental demonstration of 
these theoretical results.  Our experimental setup is shown in Fig. 2.  We used a prism pair to 
introduce SC in the beam.  Identical Brewster prisms aligned anti-parallel were used to ensure 
that angular dispersion was eliminated after the second prism.  The beam then entered an 
imaging spectrometer with the direction of the spatial chirp along the entrance slit.  A CCD 
camera on the exit plane of the spectrometer measured the spatio-spectral intensity profile of 
the beam.  From this trace, we could either measure the slope of the beam center position vs. 
frequency, which yields the spatial dispersion ζ , or the slope of the center frequency vs. 

position, which yields the frequency gradient υ .  The same beam was also sent to a Swamp 
Optics GRENOUILLE [13,14], which measured both the GDD and the PFT with high 
sensitivity [15].  (GRENOUILLE also reveals SC [16], but a spatially resolved high-
resolution spectrometer measurement has higher sensitivity for SC.)  Other sensitive methods 
of measuring PFT have also been demonstrated [17,18], but they in fact measure AD. As a 
result, they could not be used for our purposes. Interferometric techniques can also be used to 
measure PFT [6,19] but we did not prefer them due to their experimental complexity. Our 
setup (see Fig. 2) introduced constant SC with no AD.  Translating one of the prisms in and 
out of the beam adjusted the temporal chirp in the usual manner.   

 

 
 

Fig. 2.  Apparatus to introduce constant spatial chirp, variable temporal chirp and no angular 
dispersion. 
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GRENOUILLE measures the PFT as a shift of the center of the trace along the delay axis 

[15].  Therefore, by translating the prism in and out of the beam (adding and removing 
material and hence adjusting the temporal chirp of the output beam), we expect to see a 
change in the shift of the center of the trace.  Figure 3 shows some of the experimental 
GRENOUILLE traces for different values of temporal chirp.  These traces clearly show that, 
although no AD is present, the beam possesses a significant amount of PFT that results from 
spatial and temporal chirp.  This qualitatively demonstrates our theory. 
  

 

 
Fig. 3. GRENOUILLE traces of a beam that has a constant spatial chirp and variable 
temporal chirp. Note that the amount of shift of the center (a measure of pulse-front 
tilt) increases with increasing temporal chirp. 

 

More quantitatively, Eq. (15) shows that  the slope of PFT p  vs. GDD ( )2ϕ  yields the 

frequency gradient υ .  Figure 4 shows such a plot.  We measured the slope of this plot to be 

( )3 -18.78 10  rad fs mm−× ⋅  ( 0d
2.98 nm mm

dx

λ
= ).  The value of the frequency gradient 

measured by the spectrometer is ( )3 -18.87 10  rad fs mm−× ⋅  ( 0d
3.01 nm mm

dx

λ
= ), in 

excellent agreement with the other measurement. 
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Fig. 4. Experimental measurements (plus-sign symbols) of pulse-front tilt for 
different amounts of GDD.  The red line shows the linear fit. 

 

5. Conclusion 

In conclusion, we have shown that the equivalence of pulse-front tilt and angular dispersion is 
valid only for beams without spatial chirp.  In the presence of spatial chirp, the combination 
of spatial and temporal chirp also causes pulse-front tilt.  We have derived analytical 
expressions for ultrashort–pulse beams that possess angular dispersion, spatial chirp and 
temporal chirp. We verified our theoretical results experimentally using GRENOUILLE.      
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Appendix  

We have shown above that simultaneous temporal and spatial chirp causes PFT even in the 
absence of angular dispersion.  Here, we provide an alternative derivation using the matrix 
formalism introduced by Martinez [20,21] and extended by Kostenbauder [12]. 
 An optical system that introduces spatial and temporal chirp can be described in terms of a 
4×4 ray-pulse matrix as: 

 ( )2
0

1 0 20
0 1 0 00

1 0 2 1 2
0 0 0 1 0 0 0 1

LA B E

C D F
K

G H I

ζ

ζ λ ϕ

π  
  
  = =
   − π π
  
    

                        (A1) 

where ζ  is spatial dispersion and ( )2ϕ  is the GDD. 
 Matrix K can be obtained either by calculating the system ray-pulse matrix for a two-
prism pulse compressor separated by L or for a fictitious system that introduces only spatial 
chirp followed by a dispersive slab of thickness nL  (where ( )n n ω=  is the index of 

refraction).  In both cases, GDD is the total GDD due to both the material and angular 
dispersions.  Note that this approach describes only rays or plane waves (which has the form 

(C) 2004 OSA 20 September 2004 / Vol. 12,  No. 19 / OPTICS EXPRESS  4408
#4854 - $15.00 US Received 22 July 2004; revised 3 September 2004; accepted 6 September 2004



given in Eqs. (1) and (2)), so the matrix shows no pulse-front tilt ( 31 0
t

K
x

∂= =
∂

), as we 

expect. 

 In order to apply the ray-pulse matrix to a finite-size Gaussian beam, we must use the 
complex Q matrix, as illustrated by Kostenbauder in Ref. [12].  Using this approach, the 
spatio-temporal electric field is expressed as: 

( )

( ) ( ) ( ) ( )( )

1

0

1 2 1 1 1 2

11 12 21 22
0

, exp i

exp i

T
x x

E x t Q
t t

Q x Q xt Q xt Q t

λ

λ

−

− − − −

    π = − =    −     

 π− + − − 
 

                 (A2) 

The off-diagonal elements of the matrix 1Q−  indicate spatial-temporal coupling.  If we 
write the magnitude of electric field in terms of the local pulse length and the pulse-front tilt 
as 

 ( ) ( )2

2
, exp

t px
E x t

τ

 −
∝ − 

  

                                        (A3) 

Equating the magnitude of (A2) and (A3) yields 

 ( ){ }
1

2
1

22
Im Qτ

λ

−
−

0

 π=  
 

                                          (A4) 

 ( ) ( ){ } ( ) ( ){ }
( ){ }

1 1

12 211 1

12 21 1
0

22

Im
Im

2 2Im

Q Q
p Q Q

Q

τ
λ

− −2
− −

−

−π= − =                     (A5) 

For an input pulse with no spatio-temporal distortions and flat phase, we have: 

 ( )1
in 11

1
Q

q
− =                                                  (A6) 

 ( )1 0
in 222

0

iQ
λ
τ

− =
π

                                             (A7) 

Then the input Q matrix is: 

 2
in 0

0

0

0 i

q

Q τ
λ

 
 = π −
  

                                           (A8) 

The output Q matrix is found by: 

 
1

0 0
out in in

0

0 0

1 0 1 0 1

B EA C D F
Q Q Q

H IG

λ λ
λ

−
            = + ⋅ +         

           
          (A9) 

Substituting the elements of K from Eq. (A1) into (A9), we obtain: 
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( )
0

out 2
0

0 0 0

2

2 2
i

q L

Q

ζ
λ

τζ ϕ
λ λ λ

2

π + 
 =
 ππ π− − 
  

                                  (A10) 

Inverting this matrix yields: 

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )

2 2
0 0

0

2 22 2 2 2
1 0 0 0 0 0 0

out
2

00

2 22 2 2 2
0 0 0 0 0 0

i
2

i i
2 2

2 2

1
i i22 2
2 2

L q L q L q L q
Q

L q

L q L q L q L q

λ ϕ τ
λ ζ

ϕ λ ζ λ τ ϕ λ ζ λ τ

λλ ζ

ϕ λ ζ λ τ ϕ λ ζ λ τ

−

  −  
  −

 + + π − + + + π − +
 =
 

+ 
 π+ + π − + + + π − + 
 

  

(A11) 

For a well collimated beam, we can approximate: 

 ( )
2

0

i
w

q L L q
λ

π= + ≈                                       (A12) 

Therefore, 

 

( )

( ) ( )

( ) ( )

2 2
0 0 0

2 22 2 2 2 2 2 2 2
1 0 0

out 2
0 0

2 22 2 2 2 2 2 2 2
0 0

2 i 2

4 i 2 4 i 2

2
i

4 i 2 4 i 2

w w w w
Q

w

w w w w

λ ϕ τ λ ζ
ζ τ ϕ ζ τ ϕ

λ λζ
ζ τ ϕ ζ τ ϕ

−

 −
− π π+ + + + =  

 
 π π+ + + + 

         (A13) 

Using Eqs. (A4) and (A5), we find 

 

( )( )
1/ 2

2
2

2
2

0 2 2
2

0 2

44

4w

w

ϕζτ τ
ζτ

 
 

= + + 
 +
  

                               (A14) 

 
( )2

2 2 2
0

1
4

p
w

ϕ ζ

ζ τ
=

+
                                       (A15) 

which are identical to the results we obtained in the main text. 
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