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Abstract
The electric field of an ultrashort laser pulse often fails to separate into a product of purely
temporal and purely spatial factors. These so-called spatio-temporal couplings constitute a
broad range of physical effects, which often become important in applications. In this review,
we compile some recent experimental and theoretical work on the understanding, avoidance and
applications of these effects. We first present a discussion of the characteristics of pulses
containing spatio-temporal couplings, including their sources, a mathematical description and
the interdependence of different couplings. We then review different experimental methods for
their characterization. Finally, we describe different applications of spatio-temporal couplings
and suggest further schemes for their exploitation and avoidance.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since the advent of ultrashort-pulsed lasers there has been
an ever-increasing interest in them, from both the scientific
and industrial communities. What makes these sources so
appealing is mainly their ability to harness light in time
by squeezing pulse durations down to femtoseconds. As
a result, ultrashort laser pulses have became indispensable
for investigating and controlling ultrafast phenomena—events
happening on picosecond or femtosecond timescales—such as
chemical reactions, plasma dynamics, magnetization dynamics
and others [1–3]. Additionally they make it possible to
achieve unprecedented intensity levels in an electric light field,
accessing a myriad of light–matter interactions [4, 5].

Ultrashort pulses are commonly described by the temporal
variation of their power density and frequency, i.e. their
intensity and phase. The dependence of the pulse’s electric
field on spatial coordinates is often treated separately,
assuming that the pulse’s temporal properties are the same for
every spatial position along the beam, or equivalently, that the

pulse’s field separates into a product of temporal and spatial
factors. However, this assumption is often wrong, primarily
as a result of the same property that allows these pulses to
be short—their broad spectral bandwidth. Angular dispersion,
the best known source of such distortions, is everywhere, and
the broader the pulse bandwidth the more distorted the pulse
after an angularly dispersive element. Thus, in most practical
cases, ultrashort pulses exhibit an interdependence of temporal
(or spectral) and spatial (or angular) coordinates, referred to as
spatio-temporal couplings (STCs).

The sources of STCs are ubiquitous. The most common
source of STCs is the prisms and gratings used in pulse
compressors for dispersion management and which are part
of nearly every ultrashort-pulsed laser oscillator and amplifier.
Pulse compressors function by purposely introducing STCs
(angular dispersion) so that the path length of each color in
the pulse is different in order to adjust the spectral phase. But,
in the end, a successful pulse compressor must remove all of
the couplings, which enforces strict alignment requirements
on the device. Another simple example is the propagation
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Figure 1. Propagation through a prism introduces STCs. Due to the
dispersion of the prism’s glass, the output beam exhibits angular
dispersion and pulse-front tilt, which after propagation generates a
third STC, spatial chirp.

of a pulse through a singlet lens, which results in a radially
varying dispersion (spectral phase) due to the radially varying
thickness of the glass [6]. Nonlinear optical interactions, such
as nonlinear refraction and filamentation, can also introduce
spatial and temporal couplings in light pulses.

While some STCs are well-known effects, others are
still rather surprising. The best known STCs, angular
dispersion, occurs when different spectral components of the
pulse propagate in different directions, and is introduced
by prisms, gratings and etalons. After some propagation,
angular dispersion causes the spectral components to spatially
separate, introducing another STC, spatial chirp (where the
mean frequency varies with the transverse coordinate). The
peak of the temporal intensity of the pulse can also vary with
the transverse spatial coordinate if pulse-front tilt is present.
The arrival time of the peak intensity may also depend on
propagation direction, a lesser known effect called, for lack of a
more interesting term, time versus angle. Figure 1 shows some
of the more common couplings that result from propagation
through a prism. Apart from these couplings in the electric
field’s intensity, the phase of ultrashort pulses may also (and
very often does) exhibit couplings in the phase, giving rise
to interesting phenomena such as wavefront rotation. There
are eight first-order STCs in all and, in general, if a pulse has
a coupling in one domain, it has at least two in every other
Fourier domain, resulting in a total of seven and possibly even
eight different coupling. Finally, they are generally not small
effects, and when they are present, they can reduce the pulse
intensity by a large factor.

The almost ubiquitous and non-negligible nature of
STCs in ultrashort pulses makes them impossible to ignore.
The significance of these effects largely depends on the
application, and pulse parameters, and while STCs may be
negligible in some cases, they are detrimental in others.
Although STCs commonly result from misalignments and
seem undesirable, they can, on the other hand, be viewed as
an additional, controllable pulse–beam parameter and become
quite useful. Regardless of the case, a proper understanding
and characterization of these effects are paramount. As a
result, in recent years STCs have received much interest from
ultrafast researchers in many different fields. Here, we present
an overview of some of this work.

First we will discuss the general characteristics of STCs,
including their sources and mathematical representation in
different domains. We will describe all the possible STCs
and show how they are related to one another. To do this, we
will present a general theoretical approach for describing first-
order couplings and their interdependence, which can easily
be extended to describe higher-order couplings. Next, we will
focus on the measurement of STCs and review the different
experimental methods, some of which can only measure
particular couplings, while others can measure the full spatio-
temporal profile of an ultrashort pulse. Finally, we will discuss
how to avoid or utilize STCs.

2. Characteristics of pulses containing
spatio-temporal couplings

2.1. Sources of STCs

Common components used in the generation and application
of ultrashort laser pulses can become sources of STCs. With
their broad bandwidths, ultrashort pulses quickly spread out in
space and time when propagating in an angularly dispersive
medium because each color in the pulse propagates at a
different angle and group velocity. Pioneering work by
Fork and Martinez [7–9] demonstrated that, regardless of its
sign, angular dispersion always yields negative group delay
dispersion (GDD), and hence can be used to compensate for the
positive dispersion introduced by most materials in the visible
and near-IR. This led to the now ubiquitous pulse compressor
(see figure 2), which uses the angular dispersion introduced by
prisms or gratings to remove positive group delay dispersion
from pulses [10–12]. Analogous schemes employing imaging
systems to reverse the sign of the GDD are also used as pulse
stretchers in chirped-pulse amplification set-ups [12, 13].

As shown in figure 1, prisms and gratings introduce
additional STCs, including pulse-front tilt and spatial
chirp [11, 14, 15]. To avoid these distortions, pulse
compressors are usually built using four dispersive elements
(or two in a folded configuration) (figure 2), where the
first angular disperser introduces the desired negative GDD
and the last three are required to cancel out all of the
STCs, leaving only the desired negative chirp at the output.
Unfortunately, proper operation requires perfect alignment, for
otherwise, residual STCs are found at the output of the pulse
compressor [16, 17], and because such large amounts of them
are required in order to achieve the required magnitude of
negative GDD, residual STCs in an improperly aligned pulse
compressor may still be significant.

Prisms and gratings are also used for pulse shaping (see
figure 17). In this application, as in pulse compression, these
elements are used to spatially separate and recombine the
frequency components of the pulse, but here allowing the
use of amplitude and/or phase masks in the Fourier plane,
thereby obtaining the desired pulse shape [18–21]. The zero-
dispersion 4f geometry [18, 21, 22] is designed so that, when
no mask is used (and with perfect alignment), the output
pulse’s spatial and temporal shape is unchanged. While
pulse compressors introduce STCs from misalignment, Fourier
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Figure 2. The four-prism (or grating) pulse compressor is a powerful device for dispersion control in ultrashort-pulsed laser set-ups. The
pulse is shown in each stage of the device; note the significant amounts of spatial chirp and pulse-front tilt until the output.

Figure 3. Simulations of a focused pulse from a 0.2 NA lens which was originally 30 fs long: (a) no aberrations. (b) Group delay dispersion.
(c) Radially varying group delay dispersion. (d) Radially varying group delay. The curved pulse front causes the pulse to interfere with itself,
resulting in the fringes seen in this plot. (e) Spherical aberration (note the different transverse scale in this plot).

synthesis pulse shapers introduce them even when perfectly
aligned [21, 23, 24], mainly resulting from the diffraction,
angular deviation and phase retardation caused by the spectral
masks.

Lenses—one of the most common optical elements—are
also a source of higher-order STCs. The couplings introduced
by a lens are mainly due to the difference in the group and
phase velocities of the lens material combined with its varying
thickness, and any other lens aberrations. To first order, the
radially varying thickness of the lens introduces a radially
varying group delay, making the pulse front curved at the
focus rather than flat (like the wavefront), which increases the
effective pulse duration [6, 25–30]. This chromatic distortion
can be eliminated by focusing with an achromatic lens [6, 28],
but usually at the cost of additional temporal chirp in the pulse
as these multi-element lenses are quite thick [31]. However,
even if radially varying group delay is avoided, higher-order
effects will still remain, such as radially varying GDD (and so
on), which introduces (even in achromats!) a radially varying
temporal chirp [28]. Achromatic aberrations such as spherical
aberration also affect the spatio-temporal profile of a focused
ultrashort pulse [29, 32], mainly because they contribute to
the pulse-front curvature at the focus (because different parts

of the beam are focused to slightly different planes), thus
spreading the pulse in space–time. The types and magnitudes
of STCs introduced by lenses depend on the properties of the
lens and the pulse and are generally more serious for larger
bandwidths and tighter foci (some nice guidelines are given
in [29]). Figure 3 shows spatio-temporal plots of a 0.2 NA
focus with different aberrations present, where the color in the
plots is the instantaneous frequency.

Even the diffraction of ultrashort pulses off simple
apertures, like a circular aperture, can lead to spatio-temporal
structure. Diffraction off any circular boundary (an annular
slit, circular aperture or a circular disc) results in an additional
pulse that trails the main pulse front, called the boundary wave
pulse, which is due to the interference of spherical waves
emitted along the circular boundary [33, 34]. The right image
in figure 4 shows an example (simulation) of a boundary wave
pulse that was formed by propagating a collimated Gaussian
beam with a 4 mm FWHM spot size through a 4 mm diameter
hole. Boundary wave pulses can also appear at or near the
focus if the lens aperture is smaller than the beam’s full spatial
extent, although focusing and lens aberrations can change its
size and group velocity [26]. In the absence of aberrations, the
additional pulse will be behind the main pulse in time (as in the
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Figure 4. Boundary wave pulses: left: after a collimated pulse propagates through a circular aperture. Center: just before the focus of a
perfect lens (NA = 0.5) with an aperture size equal to half of the beam’s FWHM. Right: just before the focus of an (NA = 0.5) lens with
spherical and chromatic aberrations, and an aperture width equal to the beam’s FWHM.

Figure 5. Simulation of the spatio-temporal intensity profile of an
ultrashort pulse in a filament.

center image of figure 4) before the focus (z < 0) and ahead of
the main pulse after the focus, and the two temporally overlap
at the focus. Chromatic aberrations in the lens cause the
boundary wave pulse to speed up so that it no longer temporally
overlaps with the main pulse at the focus, but is instead ahead,
so it is often called the forerunner pulse [26, 29, 35].

Nonlinear propagation of ultrashort pulses is another
source of potentially complicated, higher-order spatio-
temporal structures. The dependence of the nonlinear
interaction on the pulse’s intensity and phase couples the
pulse’s spatial features to the temporal features. A dramatic
example is filamentation [36, 37]. Light filaments form when
the self-focusing from Kerr lensing overcomes diffraction,
leading to beam collapse and consequent photoionization. The
process is highly dynamic and includes high-order nonlinear
interactions [37–40] (see figure 5). These spatio-temporal
dynamics play a leading role in the very useful effect of self-
compression of laser pulses in a filament [41–43].

Due to the highly nonlinear behavior of gain media, laser
cavities are another potential source of complicated spatio-
temporal structures. Although such structures are much
more complicated to model than those discussed above, some

interesting aspects can be found in the literature (see, for
example, [44, 45] and references therein).

2.2. Mathematical description of STCs

The potential complexity of STCs knows no bounds, and
many different STCs can appear at the same time. As
figure 1 shows, a prism (or a grating) introduces both angular
dispersion and pulse-front tilt. This observation has even
led to the widely quoted—but incomplete—conclusion that
these two phenomena are equivalent [46–48], and which was
later clarified when Zeek noted that simultaneous spatial and
temporal chirp (even in the absence of angular dispersion)
is another source of pulse-front tilt [49]. The existence of
several distinct couplings and their interdependence somewhat
complicates the description of the spatio-temporal evolution of
ultrashort laser pulses.

Much of the confusion resulting from the coexistence
of various STCs can be overcome by noting that each
coupling may be present, but in a slightly different form,
in multiple domains. The evolution of the electric field
of an ultrashort pulse can be expressed in the time domain
or equivalently (via Fourier transformation) in the frequency
domain. Similarly, the field’s spatial dependence can be
described in the transverse spatial coordinate domain or the
corresponding spatial frequency domain. When STCs are
present, the pulse must be simultaneously described in at
least two dimensions, so there are a total of four equivalent
domains which can be used: (x, t), (x, ω), (k, ω) and (k, t)
(where x is transverse position, t is time, ω is angular
frequency and k is spatial frequency in the x direction). We
will consider only one transverse Cartesian coordinate (x),
as the generalization to include the others is straightforward.
As a result, the intensity and phase couplings (along with
the temporal/spectral parameters) in any one of these four
domains suffice to completely describe the spatio-temporal
evolution. The couplings in other domains are simply
equivalent representations and their relationship to one another
can be found by taking Fourier transforms.
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Consider as an example pulse-front tilt, which is an
intensity coupling in the (x, t) domain. By Fourier-
transforming the field in this domain with respect to both time
and position, one can obtain the field in the (k, ω) domain,
where the intensity coupling yields angular dispersion [50].
By including the phase couplings, one can find a more
general relationship, indicating that pulse-front tilt results from
angular dispersion and/or simultaneous spatial and temporal
chirp [49, 51].

2.3. Analytical approach for first-order couplings

The description of different STCs in each of the domains above
allows for an intuitive representation of it. In fact, by using
Gaussian profiles in time and space, analytical expressions can
be found for the relations between first-order couplings [51];
and the physical consequence of each effect can be easily
simulated for better understanding. Here we will summarize
this approach, which was presented in detail in [51].

A linearly polarized ultrashort-pulsed laser beam can
be described by the scalar electric field in space and time
E(x, y, z, t). Taking z as the propagation direction and x
and y as the transverse coordinates, there will be only three
independent degrees of freedom for the beam–pulse, because
the electric field satisfies the wave equation given by

(
∇2 − 1

c2

∂2

∂ t2

)
E(x, y, z, t) = 0. (1)

If one knows the electric field at a transverse plane z = z0,
the field at any other z plane can be found via Huygens’
integral [52]. Here we will also work with only one transverse
coordinate x and use scalar fields. A beam–pulse is free of
STCs if the spatial and the temporal dependence of the electric
field can be separated:

E(x, t) = Ex(x)Et(t). (2)

When the spatial and temporal dependences are coupled, the
electric field cannot be separated as in equation (2) and, for a
first-order coupling, the field becomes

E(x, t) → E(x, t + ζ x) (3)

where ζ is the coupling parameter. Note that equation (3)
can equivalently be written by adding a t dependence to
x . This means that one can think of pulse-front tilt in two
equivalent ways: as a transverse-position-dependent arrival
time of the maximum intensity or alternatively as a time-
dependent maximum in the transverse position intensity. This
argument is also valid for the couplings in other domains,
which will be addressed in more detail below.

In order to introduce an STC, we first write the complex
temporal amplitude of an ultrashort pulse:

E(t) = √
I (t) exp[−iφ(t)] (4)

where I (t) is the intensity and φ(t) is the temporal phase.
Assuming a Gaussian beam–pulse and temporal phase of up

Figure 6. The intensity of a pulse with tilted front, plotted in position
and time. The black line shows the beam center at each time, x0(t),
while the white line shows the arrival time of intensity maxima for
each position, t0(x). The inverse slope of the former yields
ς = dx0/dt , while the slope of the latter yields ζ = dt0/dx .

to second order (linear chirp), the electric field can be written,
in a compact manner, as

E(x, t) ∝ exp{Q̃xx x2 + 2Q̃xt x t − Q̃tt t
2}. (5)

This representation is also compatible with Kostenbauder ray-
pulse matrices used to model dispersive optical systems [53].
The complex Q̃ coefficients correspond to physical parameters
describing the evolution in space and time:

Q̃xx = −i
π

λR(z)
− 1

w2(z)
Q̃tt = −iβ + 1

τ 2
(6)

where λ is the wavelength, R is the beam radius of curvature, w
is the beam spot size, β is the chirp and τ is the pulse duration.
The cross-term Q̃xt contains the STC information. Since the
pulse intensity is the squared magnitude of the electric field, the
real part of Q̃xt yields the position-dependent intensity arrival
time, or the pulse-front tilt. The imaginary part, on the other
hand, yields a time-and-position-dependent phase. Physically,
this phase distortion causes the wavefront of the pulse to rotate
in time, so it can be called ‘wavefront rotation’ (see a movie of
this effect in [51]).

While the Q̃xt term describes the STC in the (x, t) domain
in a mathematically convenient way, a normalized parameter
would be preferable for comparison with experimental values.
As mentioned above, the normalization can be done by
including the x dependence on t (as in equation (3)) or vice
versa. This is equivalent to rearranging equation (5) to write it
in the form exp[(t + ζ x)2] or exp[(x + ς t)2], which indicates
that the pulse-front tilt can be described by ζ (with units of
time/position used in most experimental measurements [17])
as the real part of Q̃xt normalized by the pulse width; or
equivalently by ς (with units of position/time) as the real part
of Q̃xt normalized by the beam spot size (see figure 6). The ζ

and ς parameters are related to each other (see [51] for details)
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by

ζ = ς

ς2 + w2
L

τ 2
G

, (7)

where wL and τG are, respectively, the local spot size and
global pulse width (see below for the definitions of local and
global). The same principle was demonstrated earlier in the
(x, ω) domain [54], including an experimental illustration.
It was shown that the spatial chirp can be written as the
frequency gradient (the variation in the peak frequency with
position) or spatial dispersion (the variation in the peak
position with frequency) and that the two are related by an
equation equivalent to equation (7) [54].

While the normalization scheme above results in two
mathematically equivalent expressions, for experimental
considerations it is important to pay attention to the way
the couplings are actually introduced. In the case of spatial
chirp, the use of spatial dispersion [54] dictates x → x +
dx0
dω

ω, which will make the beam larger in size when mapping
each frequency to a different position. On the other hand,
a frequency gradient means ω → ω + dω0

dx x which will
increase the frequency bandwidth. Since spatial chirp is
most commonly introduced through linear optical systems,
which rarely alter the bandwidth, spatial dispersion is more
fundamental and so is preferred. Frequency gradient, on
the other hand, should be calculated indirectly using the
equivalent formula of equation (7) [54]. This consideration is
analogous to the description of chirp in the time and frequency
domains, where the frequency domain chirp parameter (group
delay dispersion) is more fundamental than its time domain
counterpart in a linear optical system.

As a result of these multiple definitions, the units and
especially the magnitudes of STCs can be confusing (is
10 fs mm−1 a large or small amount of pulse-front tilt?), so
it is more experimentally intuitive to define them in terms of
dimensionless quantities, which can be used for non-Gaussian
beams/pulses. This is done by normalizing the STC with
respect to the two relevant beam/pulse widths, for example,
for pulse-front tilt, both the beam width (wG) and the pulse
duration (τG) [55], as follows:

ρxt ≡
∫ ∫

xt I (x, t) dx dt∫ ∫
I (x, t) dx dt

1

wGτG
= Q̃R

xt√
−Q̃R

xx Q̃R
tt

, (8)

where the superscript R denotes the real part. This
normalization has the advantage that the coefficient ρ is
always between 1 and −1, and hence can easily show whether
the coupling is ‘large’ or ‘small’. The following reference
gives some nice guidelines for ‘acceptable’ and ‘unacceptable’
values of ρ for different STCs [55].

Before using such a definition, however, it is important to
realize that, even defining the widths (the beam spot size, pulse
width, bandwidth and angular divergence) becomes subtle
when an STC is involved. In the presence of pulse-front tilt, for
example, the spot size at a given moment will be less than the
spot size integrated over time. These two types of widths are
defined as local and global, respectively. Using the root-mean-
square definition, the local and global spot sizes are found to

be

�xL(t) =
[∫ [x − x0(t)]2 I (x, t) dx∫

I (x, t) dx

]1/2

=
[
− 1

4Q̃R
xx

]1/2

�xG =
[∫ ∫

x2 I (x, t) dx dt∫ ∫
I (x, t) dx dt

]1/2

= 1

2

[
− Q̃R

tt

Q̃R
xx Q̃R

tt + Q̃R2
xt

]1/2

(9)
where x0(t) is the time-dependent beam center:

x0(t) =
∫

x I (x, t) dx∫
I (x, t) dx

. (10)

Similarly, for the pulse duration, the widths are given by

�tL =
[

1

4Q̃R
tt

]1/2

�tG = 1

2

[
Q̃R

xx

Q̃R
xx Q̃R

tt + Q̃R2
xt

]1/2

.

(11)
It is important to distinguish between the local and global

quantities. For instance, beam profiles are usually measured
with slow detectors, which integrate the pulse over time; hence
they yield the global beam spot sizes. Also, measuring the
pulse duration of a small portion of the beam results in the
local pulse duration, which can be significantly shorter than
the global pulse length.

Having examined the STCs and their effects in detail in the
(x, t) domain, it is now straightforward to extend the analysis
to other domains, simply by Fourier (or inverse) transforming
the electric field with respect to the proper variable:

E(x, ω) = 1

2π

∫
E(x, t)e−iωt dt

E(k, ω) = 1

2π

∫
E(x, ω)e−ikx dx

E(k, t) =
∫

E(k, ω)eiωt dω.

(12)

For a Gaussian beam–pulse, the Fourier transforms in
equations (12) can be evaluated analytically in each of these
domains [56] resulting, in each case, in an electric field
having the same form as equation (5). Consequently, the
arguments above about the behavior of STCs in the (x, t)
domain (normalization and definition of widths) can be easily
generalized by replacing the parameters in equations (8)
and (9) with their appropriate counterparts.

It is worthwhile noting that knowledge of the spatio-
temporal field in the (x, t) domain (or in any one of the
four domains) is sufficient to find the field in the other three
domains. As a result, we can reach the following important
conclusions that, to the first order: (i) there are a total of eight
STCs (four intensity and four phase) and (ii) only two of these
couplings are independent. In table 1, we list all of the first-
order STCs.

Another advantage of this scheme is that direct analytical
relations between STCs in different domains can be obtained.
A complete table of formulae can be found in [51]. One
of the results from this table can be written (with proper
normalizations) as

pulse-front tilt = angular dispersion

+ temporal chirp × spatial chirp, (13)

6



J. Opt. 12 (2010) 093001 Review Article

Figure 7. Intensity profiles in the (x, t), (x, ω), (k, ω) and (k, t) domains, resulting from a misaligned pulse compressor (parameters given in
the text). The dimensionless coupling coefficients are: ρxt = −0.16, ρxω = 0.26, ρkω = −0.71 and ρkt = 0.7.

Table 1. Intensity and phase couplings in different domains.

Domain Intensity coupling Phase coupling

(x, t) Pulse-front tilt Wavefront rotation
(x, ω) Spatial chirp Wavefront tilt dispersion
(k, ω) Angular dispersion Angular spectral chirp
(k, t) Time versus angle Angular temporal chirp

which is equivalent to the results obtained in a case-specific
study [49]. It is also interesting to note that the intensity
coupling in any one domain yields a contribution to the phase
coupling in the adjacent domain. The spatial chirp, for
example, can be manifest in the time domain as wavefront
rotation. This can be understood if we consider that spatial
chirp causes the center frequency to increase (or decrease)
across the beam, which in turn causes the phase to evolve faster
(or slower) along the transverse axis, and thus the wavefronts
(planes of constants phase) will rotate as time passes.

While it is very useful to find all eight STCs starting
from two (one intensity and one phase in a given domain), it
is experimentally more difficult to measure phase couplings
(see about measurement methods in section 3) because most
detectors and even considerably more sophisticated pulse
measurement techniques are insensitive to this information.
Fortunately, using the method above, it is possible to express

the phase coupling in terms of the intensity coupling in the
adjacent domain. Using the table of formulae in [51], once
more we write

wavefront rotation = spatial chirp

2
+ temporal chirp × pulse-front tilt, (14)

again with proper normalizations. Analogous expressions can
be found for the other phase STCs as well. The significance
of equation (14) is that the phase STC, wavefront rotation, can
be written in terms of spatial chirp and pulse-front tilt, two
intensity couplings. This leads to an important conclusion that
two intensity couplings suffice (along with the beam and pulse
parameters) to retrieve the remaining six STCs.

In figure 7, we present a simulation of a first-order STC
in a realistic scenario. We start with a pulse with a transform-
limited duration of 20 fs FWHM and a collimated 2 mm waist
size (beam divergence also affects the STC [11, 57], which is
also accounted for in our approach since the radius of curvature
is included in equation (6)). This pulse is then chirped by
the introduction of 104 fs2 group delay dispersion. In order
to recompress this pulse, we simulate a four-prism pulse
compressor, made with equilateral SF14 prisms, separated
by 50 cm (between the first–second and third–fourth prisms,
see figure 2). This compressor over-compensates the GDD
by −1400 fs2. Assuming that all prisms are used in the
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Figure 8. Intensity profiles in the (x, ω) and (x, t) domains for a spatially chirped pulse which has nonzero third-order spectral phase.

minimum-deviation configuration, except for the last, which
is misaligned merely by 1◦, we calculate the spatio-temporal
intensity profiles 5 m after the pulse compressor. In figure 7,
we display the intensity profiles in all four domains, which
exhibit tilted ellipses, indicating the presence of intensity
STCs. The dimensionless coupling parameters are indicated in
the caption. Note that such a minute misalignment is sufficient
to cause significant distortions.

2.4. Higher-order effects and more complicated profiles

In section 2.3, we described a general theory of first-
order STCs of Gaussian pulses and beams. While the
approximations made may appear restrictive, the approach
can in principle be generalized to include arbitrary profiles
and couplings of arbitrary orders. Once the complete spatio-
temporal electric field of the pulse is defined in any one of
the four domains, the fields in the other three can be found
(typically numerically), allowing for a direct examination of
the couplings. In figure 8, we simulate a pulse with a Gaussian
spectrum, linear spatial chirp, but spectral phase up to the
third order. Upon transformation to the (x, t) domain, we
observe the interesting result that the satellite pulses resulting
from the third-order spectral phase shift apart spatially, due
to the pulse-front tilt resulting from simultaneous spatial and
temporal chirp.

There are many types of nonlinear STC, some introduced
by the higher-order angular dispersion of prisms and gratings,
others by effects like lens aberrations. For example, the lowest-
order chromatic aberration, or radially varying group delay,
introduces an x2ω phase coupling just after the lens which
results in a quadratic pulse front (i.e. higher-order pulse-front
tilt) [6]. Radially varying GDD comes about from an x2ω2

phase term due to the varying thickness of the lens, which
will make the local pulse duration vary with x . Lowest-
order spherical aberrations are described by an x4ω phase
term, which produces a quartic pulse front after the lens.
The following references give formulae for calculating these
couplings from the lens, pulse and beam parameters [29, 32].
In many realistic cases, all of these couplings, as well as

some higher-order ones, can be present in a focused ultrashort
pulse. If the lens is placed after a misaligned pulse compressor,
stretcher or pulse shaper, the linear couplings may be present as
well. All of these common STCs make it easy for an ultrashort
pulse to be very complicated.

3. Measurement of STCs

A major reason why spatio-temporal couplings in ultrafast
laser beams have not been studied, removed and exploited
much is probably the difficulty in measuring them. Indeed,
the mere temporal characterization of an ultrashort laser
pulse in the complete absence of STCs had already been
a very challenging task itself until sophisticated techniques
were developed, the most popular being frequency-resolved
optical gating (FROG) [58]. Adding an entangled spatial
dimension just makes the characterization problem even more
difficult because the pulse’s intensity and phase then need to
be measured simultaneously in both space and time (or any
equivalent set of domains). And many common STCs, like
those from nonlinear propagation and lens aberrations, result
in small temporal, spatial and/or spectral features, so high
resolutions are often needed for these measurements.

In this section, we review the state of the art of techniques
for measuring spatio-temporal couplings in ultrashort laser
pulses. We will begin with the measurement of one particular
type of STC, and then move on to discuss more general
and comprehensive techniques capable of measuring the full
spatio-temporal electric field (intensity and phase). As we have
shown in section 2, with knowledge of the spatio-temporal
electric field in one domain, we can easily deduce the form
of the field in all three other domains with simple Fourier
transforms.

3.1. Measurement of an individual STC

3.1.1. Spatial chirp. Of all the types of STC, spatial chirp
is probably the easiest to measure [54]. A spectrometer
provides the spectral resolution necessary for the measurement.
And if the spectrometer has an iris aperture as its entrance
(e.g. through an optical fiber), taking spectra while translating
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Figure 9. Spatial chirp tilts the trace (above) and pulse-front tilt translates the trace in delay (below) in GRENOUILLE measurements. This
allows GRENOUILLE to measure these distortions easily and without modification to the apparatus.

the entrance iris on the x–y plane provides an I (x, y, ω)

profile. More conveniently, an imaging spectrometer with
an entrance slit (along the x direction) and a 2D detector
yields I (x, ω) directly at its image plane on a single-shot basis
without the need for scanning. From such measurements, both
the spatial dispersion and the frequency gradient (as well as any
higher-order xω couplings in the intensity) can be extracted
following the definitions described in section 2.3.

It was recently discovered that a single-shot second-
harmonic-generation (SHG) FROG device (and its simpler
version GRENOUILLE) also measures linear spatial chirp,
as illustrated in figure 9 [59]. Because a single-shot SHG
FROG device mixes the frequencies of different spatial parts
of the input beam along a line focus in order to create delay
resolution, spatial chirp in the input beam will result in a tilt
of the measured, otherwise symmetric, FROG trace in the τ–
ω plane. The amount of tilt can be quantitatively measured
and used to deduce spatial chirp. It is interesting to note that a
FROG measurement yields the frequency gradient parameter
directly; in order to obtain the spatial dispersion parameter,
one can use the equivalent of equation (7) [54]. The great
advantage of using single-shot FROG or GRENOUILLE to
measure spatial chirp is its experimental simplicity. A typical
ultrafast laser lab probably already uses a FROG to measure the
temporal profile of their pulses, so the benefit of spatial chirp
detection comes at no additional experimental effort.

3.1.2. Pulse-front tilt. The second important class of STC
measurement techniques are those that measure pulse-front
tilt. As discussed above, two different types of pulse-front
tilt are commonly found in ultrashort laser pulses: linear
pulse-front tilt resulting from angular dispersion or spatial
and temporal chirp, and radially varying group delay from

chromatic aberrations which results in a curved pulse front. We
will discuss the measurement of these two types of pulse-front
tilt separately.

3.1.2.1. Linear pulse-front tilt (and angular dispersion).
A large number of devices in ultrafast optics are based on
interferometers. Depending on the spatial parity of the beams
in the two arms of the interferometer (which in turn depends
on its geometrical configuration), signatures of pulse-front tilt
can be embedded in the measurement, which can then be used
to determine the amount of pulse-front tilt.
A. Interferometric field autocorrelation. The earliest
techniques developed to measure linear pulse-front tilt used
linear spatial interferometry. In these techniques [60, 61], the
beam in one arm of a standard Michelson interferometer is
spatially flipped (e.g. by using different numbers of reflections
in the two arms). The output beams from the two arms are
then crossed at a small angle and a CCD camera captures
spatial interference fringes where they overlap. When the path
length difference between the two arms is varied, a packet of
interference fringes can be observed to appear from one side
of the beam, move to the center when the path lengths of the
two arms are the same and then disappear at the other side of
the beam. Thus, by measuring the center position of the fringe
packet as a function of relative delay, one can calculate the
value of the pulse-front tilt.

However, there is an important caveat in the interpretation
of the measurement results of this method. As it is based on
linear interference, it does not actually measure all sources
of pulse-front tilt. In fact, an ultrashort pulse is not even
needed for this technique; a broadband light source having an
equivalent coherence length will yield the same interference
fringe packet. In order to form interference, this technique
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assumes that different parts of the beam have the same spectral
content, so it cannot measure the type of pulse-front tilt
resulting from the coexistence of spatial chirp and temporal
chirp [49]. What is measured is actually only the pulse-front
tilt caused by angular dispersion.

Angular dispersion can also be measured by combining
an imaging spectrometer with an inverted-beam Michelson
interferometer [57]. A spectrally resolved spatial interference
pattern is recorded on the image plane of the spectrometer,
which contains information about the angular dispersion in
the spectral dependence of the spatial fringe spacing. An
angular chirp measurement resolution of 0.2 μrad nm−1 has
been demonstrated with this technique.
B. Single-shot intensity autocorrelators. Another class of
pulse-front tilt measurement techniques is based on the single-
shot noncollinear intensity autocorrelator, which is a slightly
angle-detuned interferometer with an SHG crystal at the beam
crossing point [62]. A delay-varied SHG autocorrelation signal
is generated along the direction of beam crossing, allowing for
temporal characterization of the pulse. As with the spatial
interferometer, if the two interacting beams have different
spatial parity, pulse-front tilt can leave a signature in the
measurement result. Being nonlinear optical in nature, these
techniques measure the true pulse-front tilt, as the SHG signal
is generated only where the two pulse fronts meet.

In most single-shot autocorrelators, the beam is line-
focused at the SHG crystal in order to obtain a high
SHG efficiency. With pulse-front tilt in the direction
of the line focus, a usual non-inverted-beam Michelson-
type autocorrelator produces an undistorted autocorrelation
of the pulse, while an inverted-beam autocorrelator will
produce an autocorrelation with a different width than
the autocorrelation width of a spatio-temporal-coupling-free
pulse [62]. Unfortunately, it is difficult to quantify the pulse-
front tilt directly from such a comparison.

It is better to send an unfocused beam through a two-
dimensional single-shot autocorrelator. It happens that, if the
beam is spatially inverted in one arm of the autocorrelator in
the plane perpendicular to that of beam crossing, the pulse-
front tilt in the parity-inversion plane will cause a tilt in the
spatial distribution of the SHG signal [62–64]. This tilt can
then be quantified to determine the pulse-front tilt. Devices
based on this principle are commercially available as ‘tilted-
pulse-front autocorrelators’.
C. GRENOUILLE. It might be a little surprising to note that
even a beam geometry without inversion can also be used to
measure pulse-front tilt. This is the case with GRENOUILLE,
the simplified version of a single-shot FROG device [65]. It
is found that, for simple geometrical reasons, pulse-front tilt
along the beam-crossing direction in a GRENOUILLE causes
a shift of the measured trace along the direction of beam
crossing [17]. Therefore, the delay-center shift of the measured
GRENOUILLE trace can be measured and used to calculate
the pulse-front tilt in the beam. As in the case of the spatial
chirp measurement, this feature comes with no modification to
the GRENOUILLE device at all.

3.1.2.2. Curved pulse-front measurements. In many
experiments, laser pulse fronts are distorted, but not in a linear

fashion. One important example is the curved pulse front of a
focused ultrashort pulse, which is the result of the chromatic
aberration in the focusing lens. Some techniques have been
developed to characterize such curved pulse fronts.

Most such curved pulse-front measurement techniques
operate by the same principle as an interferometer or an
intensity autocorrelator described in section 3.1.2.1. However,
instead of overlapping two replicas of the same beam with
different spatial parities, the interference or cross-correlation
with a flat-pulse-front reference beam is used. When
measuring the pulse front of a focused ultrashort pulse, a beam
is usually passed twice through a lens under test, focused and
recollimated, doubling the pulse-front curvature in the process,
and then is allowed to interfere or correlate with a plane-wave
reference beam.

The linear interference version of this technique is also
known as light-in-flight holography [66] when an ultrashort
pulse is involved. Although a linear interferometer, any light
source with a comparable coherence length can be used for
this measurement. A nonlinear optical crystal can instead be
placed at the output of the interferometer to make an intensity
cross-correlator [29, 67], which measures the true curved pulse
front. A higher temporal resolution can be achieved when a
short reference pulse is used for the cross-correlation.

Such measurements have been extensively used to
characterize the curved pulse front of focused ultrashort pulses.
The agreement between the measurement and calculation
results was generally good.

3.2. Full spatio-temporal electric field measurements

Whereas the characterization of one or two spatio-temporal
coupling parameters may suffice in some applications, in many
others such a simple description falls short. This is especially
true when the pulse bandwidth is broad, the spectrum and/or
phase are complicated, or the spatio-temporal coupling is not
linear. The ultimate measurement in such cases is that of the
full intensity and phase of the complex spatio-temporal electric
field.

It is fundamentally sufficient to measure the complex
electric field in any one of the four spatio-temporal domains;
the expressions in the three other domains can simply be
obtained by performing Fourier transforms. Also, due to the
wave equation, a propagating electromagnetic field has only
three degrees of freedom. Specifically, in order to know the
electric field in the full space–time, one need only determine
the spatio-temporal field at one longitudinal coordinate z0.
Propagating to all other values of z can be simply achieved by
applying Huygens’ integral. Thus, in all the discussions below,
we will only concern ourselves with the measurement of the
electric field at one longitudinal plane.

Techniques in this category are often straightforward
extensions of well-established temporal pulse characterization
techniques—FROG, SPIDER or spectral interferometry. Some
exceptions are also summarized.

3.2.1. Spatially resolved spectral interferometry and SPIDER.
Spectral interferometry is a highly sensitive linear temporal
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Figure 10. Spatially resolved spectral interferograms using a transform-limited reference pulse that is free of STCs when three different STC
are present in the unknown pulse. Left: pulse-front tilt. Center: pulse-front curvature, such as that from chromatic aberration. Right: spatial
chirp. The spectral fringes are due to the delay between the reference and unknown pulses, which is purposely introduced so that the Fourier
filtering algorithm can be used to reconstruct the spatio-spectral electric field from the interferogram.

pulse characterization technique, in which the pulse to be
characterized is combined with a known reference pulse with
a certain relative delay introduced between them. This results
in an interference fringe pattern in which the spectral phase
difference between the interfering pulses becomes the phase
of the spectral fringes. Combining this information with
the spectrum and the spectral phase of the reference pulse
(which must be known), the spectrum and spectral phase of
an unknown pulse can be completely characterized. The most
common and reliable algorithm for extracting the unknown
field from the fringe pattern is Fourier transform spectral
interferometry [68–70]. A major limitation of this method,
however, is the requirement to have a well-characterized
reference beam, which must include all frequency components
present in the beam to be characterized, in order to form
interference fringes at all the wavelengths of interest. Also,
the unknown and reference pulses must be separated by
approximately five pulse lengths in order to generate the
spectral fringes required for the inversion algorithm, which has
the significant disadvantage of significantly underutilizing the
spectrometer resolution.

SPIDER is essentially a self-referenced version of spectral
interferometry, in which both pulses are upconverted in a sum-
frequency generation (SFG) crystal with a small frequency
shear between them. Thus the derivative of the spectral
phase (group delay) of the unknown pulse becomes the phase
of the spectral fringes, which, along with an independent
measurement of the spectrum, can be extracted to complete
the temporal characterization of the pulse, provided that the
time separation between the two pulses is known with very
high accuracy [71]. Fourier filtering is also usually used for
the reconstruction in SPIDER.

Because SPIDER and spectral interferometry are one-
dimensional measurements, requiring only a linear array
detector, the inclusion of an additional spatial dimension is
rather straightforward by employing a imaging spectrometer
and a 2D detector, like in the apparatus described earlier
for the measurement of spatial chirp. For spatially resolved
spectral interferometry, a temporally (spectrally) and spatially
characterized reference beam is used so that the difference in
the phases of the two beams can be extracted from the spatio-
spectral interference pattern recorded on the 2D detector,
which can be used to reconstruct the spatio-temporal electric
field of the unknown pulse [72, 73]. Note that the same

Fourier transform algorithm can also be used in the two-
dimensional case to extract the unknown field, except that the
Fourier transform must be taken for each value of x . As in
the one-dimensional case, a pre-characterized reference pulse
containing the spectrum of the unknown pulse must be used
and, moreover, in the spatially resolved case, it must also
spatially overlap with the unknown pulse. Spatially resolved
spectral interferometry has been useful for several applications
such as studying lens aberrations [74, 75] and self-focusing
in transparent media [76, 77]. Figure 10 shows examples of
spatially resolved spectral interferograms for three different
STCs.

Because SPIDER is a self-referenced version of spectral
interferometry, it can in principle also benefit from the same
addition of one spatial dimension. However, there is another
subtlety to be noted. Owing to its self-referencing nature,
a spatially resolved SPIDER, which simply uses an imaging
spectrometer to measure the spectral interferogram at each
spatial position along one beam dimension [78], can determine
most features of the spatio-temporal field. But it does not
yield the spatial phase of the beam and the spatially varying
group delay (the arrival time at each position or pulse front). In
order to obtain the full information of the spatio-spectral phase,
both spatial and spectral shearings should be present. Spatial
shearing can be achieved by overlapping two spatially shifted
beams on the 2D detector, while maintaining a small angle
between their propagation directions, thus creating a carrier
spatial modulation [50, 79]. The same algorithm for extracting
the spectral phase can be used in the spatial domain.

Obviously, only one spatial dimension can be included
in this type of method because the other spatial dimension is
used for mapping wavelength onto position to measure the
spectrum. But the field’s dependence on the other transverse
dimension can be measured by scanning a slit in that direction.

3.2.2. Spectrally resolved spatial interference. As mentioned
above, an important practical limitation of the usual collinear
spectral interferometry (and SPIDER) is that high spectrometer
resolution is required, much of which is lost in the
reconstruction algorithm [68, 80]. This is due to the fact that,
in order to extract the spectral phase in the Fourier filtering
algorithm, one needs to be able to separate the interference
term from the DC component in the Fourier transform of
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Figure 11. SEA TADPOLE retrieval. The top left image is a typical interferogram, which is Fourier-transformed from the λ–xc to the λ–kc

domain where only one sideband is kept. This sideband is then inverse-Fourier-transformed back to the λ–x domain. The result is then
averaged over xc and the reference pulse is divided out in order to isolate the intensity and phase of the unknown pulse.

Figure 12. SEA TADPOLE experimental set-up. A reference pulse and an unknown pulse are coupled into two single-mode fibers with
approximately equal lengths. At the other end of the fibers, the diverging beams are collimated using a spherical lens ( f ). After propagating a
distance f , the collimated beams cross and interfere, and a camera is placed at this point to record the interference. In the other dimension, a
grating and a cylindrical lens map wavelength onto the camera’s horizontal axis xc.

the interferogram. This requires that the interference fringe
(carrier) spacing be smaller than the smallest feature in the
signal spectrum, and so the spectrometer should have a
resolution several times higher than that needed to resolve the
smallest spectral feature in the unknown pulse.

It was later realized that, by temporally overlapping and
crossing two beams at a small angle at the entrance slit of an
imaging spectrometer to create a spatial carrier modulation,
one can circumvent this problem and use the full resolution
of the spectrometer to measure the unknown pulse. The
Fourier filtering to extract the unknown pulse from the fringe
pattern can be performed analogously to that in spectral
interferometry, but instead along the spatial dimension, where

the crossing angle plays the role of the delay [81]. This is
illustrated in figure 11. Pulse characterization in this fashion
has been suggested by [82] and Geindre et al [81], and
systematically studied, simplified and developed as a generic
pulse measurement technique (named SEA TADPOLE) by
Bowlan et al [83]. The SEA TADPOLE experimental set-up
is shown in figure 12. This method has also been applied
to SPIDER to achieve the same spectral resolution benefits
(named SEA SPIDER) by Kosik et al [84].

Though spectrally resolved spatial interferometry is more
commonly used to measure just the temporal electric field
with high spectral resolution, because it is two-dimensional,
the spatio-spectral field of the unknown pulses is present in
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the interferogram and can be extracted by the Fourier filtering
algorithm. Just as spectral resolution is lost due to Fourier
filtering along the frequency axis in spectral interferometry,
in spectrally resolved spatial interferometry, some spatial
resolution will be lost. But in the case of SEA TADPOLE,
the use of fibers as the entrance conduits for the beam into the
device results in the loss of the pulse’s spatial information, and
scanning of the fiber (see section 3.2.3) is necessary to measure
the spatio-temporal field.

3.2.3. Scanning field measurements. Whereas the two
methods described above can only measure a spatio-temporal
field with one spatial dimension, full 2D spatial resolution
can be achieved by scanning a smaller aperture across the
beam and measuring the electric field of that sampled by the
aperture. A single-mode fiber naturally acts as an aperture,
sampling the electric field within its mode area. Its mode
size can be as small as a few microns, enough to measure
the field at a focus, which is important for many applications.
In contrast, spatially resolved spectral interferometry can only
measure recollimated beams, in which case information about
the field at the focus can only be indirectly obtained, leaving it
susceptible to apparatus misalignment [73, 74].

The electric field sampled through the aperture will
then need to be measured temporally or spectrally resolved.
Furthermore, in order to characterize the full spatio-
temporal phase, it is important for the location-specific pulse
measurement to preserve the ‘absolute’ temporal/spectral
phase—in this case actually the spatial phase—in order to
be able to stitch the measurement results together in a 3D
fashion. In this regard, self-referenced FROG and SPIDER
measurements are not sufficient, while spectral interferometry
with a reference pulse is.

SEA TADPOLE uses a pair of single-mode fibers,
one for sampling a known reference pulse (usually the
beam before entering an optical system under test) and
the other for scanning the field of the beam of interest,
and is therefore ideally suited for this task. Figure 12
shows a schematic of scanning SEA TADPOLE. It has been
demonstrated to work very well for high spatial and high
spectral resolution characterization of a 3D spatio-temporal
electric field, including focused electric fields, and Bessel-X
pulses, with remarkable success [85–87]. When the single-
mode fibers do not offer enough spatial resolution, fiber
NSOM probes can instead be used to achieve sub-wavelength
resolution [87]. Given its good performance and design
simplicity, it is clearly the method of choice for full-3D spatio-
temporal electric field characterization, whenever a suitable
pre-characterized reference pulse is available, or when only the
performance or distortion of a linear optical system (such as a
dispersive medium or a pulse shaper) is of interest. Figure 13
(top) shows a scanning SEA TADPOLE measurement from
a 0.44 NA lens which has a lot of chromatic aberrations, a
little spherical aberration, and the additional pulse is due to
diffraction off of the lens’ aperture. The additional pulse or the
‘forerunner’ pulse is 500 nm is size, and so a 500 nm NSOM
probe was used to make this measurement. The simulations
shown below the measurements are to confirm their accuracy
and use the method described in this [35].

3.2.4. Digital holography. Rather than adding spatial
dimensions to a temporal pulse measurement technique, a
different route to the full spatio-temporal characterization of
an electric field involves extending a spatial field measurement
technique into the time (frequency) domain.

The analog of spectral interferometry in the spatial domain
is holography, in which the beam of interest is overlapped
with a flat-wavefront reference beam at a small angle, and
the resulting spatial interference fringes are recorded, which
contain the difference of the spatial phases of the two
beams [88]. Gabolde et al have developed a technique based
on digital holography, in which they send a portion of the
beam through a small pinhole and a narrowband frequency
filter to create a quasi-monochromatic flat-wavefront reference
beam [89]. Interfering the reference beam and the beam
under investigation creates a digital hologram on the CCD
detector at the narrowband filter’s transmission wavelength.
A series of measurements are made at different wavelengths
across the signal spectrum. By applying the digital holography
inversion algorithm, which is usually also Fourier filtered, one
can obtain the spatial intensity and phase profiles at all the
test wavelengths. A final FROG measurement is made to
determine the spectral phase profile of the pulse, which links
the holographic spatial phase profiles together. At the end of
the measurement, a full 3D spatio-temporal intensity and phase
profile of the beam is obtained.

A clever single-shot implementation, dubbed STRIPED
FISH, was later demonstrated, using a low-resolution 2D
diffraction grating and a large 2D CCD detector [90]. As
shown in figure 14, the 2D diffraction grating creates a 2D
array of replicas of the slightly crossing signal and reference
beams, each beamlet pair emerging at a different angle. The
beamlet array passes through a narrowband interference filter
tilted at a small angle; the filter’s transmission wavelength
varies with the incidence angle, resulting in wavelength
variation in the filter’s tilting plane. Each beamlet pair in the
2D array overlap and interfere in a different section of the
large CCD detector, allowing the simultaneous recording of the
holograms at difference wavelengths. This single-shot design
has been tested and demonstrated to work remarkably well with
spatio-temporally distorted beams. An example of STRIPED
FISH measurement of a pulse containing spatial chirp is shown
in figure 15.

3.2.5. Other methods. Just as in the case of temporal or
spatial characterization of an optical field, it is difficult to place
all existing techniques into predefined boxes. For the sake
of completeness, we will mention some other techniques not
categorized in the previous discussions.

One technique, called CROAK [91], is based on a pair
of spatially resolved spectral measurements in both the near-
and far-fields and another FROG measurement of the temporal
field. There is no analytical formula for the retrieval of the
spatio-temporal field. Rather, a Gerchberg–Saxton algorithm
is used to iteratively retrieve the spatial phase that yields the
numerical evolution of the spatial spectra from the near-field
to the far-field, which is combined with the FROG-retrieved
spectral phase to construct the spatio-temporal phase. This
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Figure 13. E(x, z, t) in the focal region of an aspherical lens measured by scanning SEA TADPOLE. The experimental results are displayed
in the top plots and the simulations are shown in the bottom plots. Each box displays the amplitude of the electric field versus x and −t at a
distance z from the geometric focus. The color represents the instantaneous frequency, which shows that the redder colors are ahead of the
bluer colors due to material dispersion. Several STCs are simultaneously present in this focusing pulse giving it a very complex
spatio-temporal field: diffraction off of the lens aperture results in the forerunner pulse, chromatic aberrations make the color vary with x and
z, and the additional pulse (the forerunner pulse) is ahead in time, spherical aberrations make the forerunner pulse brighter, and material
dispersion results in some temporal chirp or variation of the pulse’s color with t . This data was taken from [87].

Figure 14. Three-dimensional view of STRIPED FISH. The signal
and reference pulses are crossed at a small vertical angle α. The
diffractive optical element (DOE) is rotated by an angle ϕ about the z
axis and the interference bandpass filter (IBPF) is rotated by an angle
β about the y axis. The inset shows one of the spatial interferograms
(‘digital holograms’) captured by the digital camera.

method has been demonstrated to work on a simple one spatial
dimension linearly coupled spatio-temporal field. However,
its performance in more complicated situations has not been
investigated.

There are also techniques based on the well-known
Shack–Hartmann wavefront sensors, which detect local k-
vectors in a beam. The first such technique was developed by
Grunwald et al, in which a collinear intensity autocorrelator
is combined with a Shack–Hartmann wavefront sensor [92].
In this technique, spatially resolved collinear interferometric
autocorrelation traces are measured along with the local
wavefront normals.

A further extension of this technique, called shackled
FROG [93, 94], combines the Shack–Hartmann sensor with a
FROG measurement performed at the center of the beam. The
Shack–Hartmann wavefront measurements can be conducted
at a series of distinct wavelengths within the pulse bandwidth
or, in the case of one spatial dimension, on the focal plane of
an imaging spectrometer. The FROG measurement serves to
link all the phase measurements together. The shackled FROG
technique has been successfully applied to measure the spatio-
temporal structure in a tilted-pulse-front beam and a Bessel-X
pulse.

Finally, an interesting technique based on scanning near-
field microscopy has been developed [95, 96]. In this
technique, a near-field probe is brought to the surface of a
waveguide, sampling the local evanescent wave, which carries
the amplitude and phase information of the propagating field.
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Figure 15. (a) x–t slice of the measured electric field E(x, y, t) of a pulse with spatial chirp, temporal chirp and pulse-front tilt. The vertical
axis shows the electric field intensity |E(x, t)|2 and the color shows the instantaneous wavelength derived from the phase ϕ(x, t). The spatial
gradient of color shows the spatial chirp along the x direction. (b) y–t slice of the same measured electric field. No spatial chirp is present
along the y direction, as expected.

Figure 16. Two-prism (left) and single-prism (right) pulse compressors.

Figure 17. Standard 4f pulse shaper and spatio-temporal pulse
shaper.

The output from the probe is then mixed interferometrically
with a reference field, and a photodetector measures the
modulation formed by interference. The near-field probe
can be scanned with sub-wavelength resolution, producing a
spatial map of electric field on the surface of the sample,
whose Fourier transform is exactly the wavevector (k-space)
distribution. The delay between the probe and the reference
pulses can also be varied. Using this technique, one can track
the evolution of the waveguide propagating mode in both k-
space and time, uncovering a wealth of propagation dynamics
in photonic crystal structures.

4. Effects and applications of STCs

Spatio-temporal couplings of an ultrafast laser beam are a
rich phenomenon. On the one hand, they greatly complicate
dealing with laser pulses, and for this reason, they are carefully
avoided in many experiments. On the other hand, the ability
to manipulate the pulse’s spatio-temporal couplings provides a
new degree of freedom in exploiting a laser pulse, which is very
welcome in many tightly constrained experiments that demand
optimal interaction of pulses. Indeed, they correspond to the
information present in a pulse.

Whether to avoid them or to exploit them, the ultrafast
scientist needs to quantitatively understand how spatio-
temporal couplings are generated, how they evolve in an
optical system and how they can affect experimental results
in various situations. In this section, we will review some
interesting spatio-temporal effects and their applications in
various experiments.

4.1. Sources and avoidance of STCs

As mentioned previously, in many cases, STCs in ultra-
short laser pulses result from misalignments of dispersion
management devices, such as pulse compressors/stretchers
which are composed of prisms and gratings. The commonly
used four-prism (grating) compressor/stretcher design imposes
strict alignment conditions to avoid residual STCs at the
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output. As shown in the simulation results in figure 7, minute
misalignments in prism angle can yield significant distortions.
An elegant way of relaxing this tight alignment constraint is to
use a single prism and corner cube [97]. This design exploits
the fact that precision corner cubes not only return the beam
parallel (to within a few arcseconds) to the incoming direction
with a very high accuracy, but also they invert the beam image.
In the configuration shown in figure 16, a corner cube after the
first prism can be used to fold the beam and send it through
the first prism for the second pass. Next, a simple roof mirror
can send the beam back through the same prism again, at a
different height. The last reflection through the corner cube
and transmission through the prism completes the single-prism
pulse compressor, equivalent to a four-prism design. Because
of the involvement of a corner cube, the alignment constraints
are significantly reduced. This single-prism pulse compressor
is also more compact and much easier to tune for another laser
center wavelength.

Another device that can introduce undesirable spatio-
temporal couplings in a laser beam is the 4f pulse shaper [21].
Like a grating-pair pulse compressor, its very functionality
relies first on the generation of spatio-temporal coupling—the
input beam is spectrally dispersed on the Fourier plane, where a
mask is used to modulate the spectral intensity and phase. The
modulated frequency components are then synthesized back
at the output, where the spatio-temporal coupling introduced
in the Fourier plane should be exactly reversed and removed.
However, in practice, because the frequency components at
the Fourier plane are never completely spatially separable—
although focused, every frequency component has a finite
spot size which overlaps with its neighboring components—
the intensity and phase modulation of the Fourier-plane mask
is also not completely spectral [21]. If the modulation is
sharp compared with the spot size of individual frequency
components on the Fourier plane, the output beam and its
focus in an experiment will suffer from a linear spatio-temporal
coupling. This effect has been extensively studied in the
literature, and its implications for quantum control experiments
were also considered by Sussman et al [23]

On the other hand, if the modulation is gentle enough,
the output beam will not exhibit severe spatio-temporal
coupling, and so can be considered as almost purely spectrally
shaped by the mask. Like a spectrometer, the 4f pulse
shaper only uses one spatial dimension for dispersion, and
the other orthogonal dimension is not functionally exploited.
It is easy to see that, by inserting a 2D mask on the
Fourier plane, one can in principle make arbitrary spatio-
temporal shaping involving the additional spatial dimension.
This has been demonstrated [21, 98] as a generic spatio-
temporal shaper and has been applied to the coherent control
of lattice responses [99] and multidimensional nonlinear
spectroscopy [100]. Such spatio-temporal pulse shapers
have also been successfully characterized with 2D spectral
interferometry [101].

One system whose STC has been extensively studied is
a focusing system containing one or many lenses [6, 25, 32].
This is of great practical interest, because most experiments
require intensities only achievable by focused pulses. It is

known that a focused ultrashort pulse usually suffers from
radially varying pulse duration and group delay. Analytical
formulae have been derived for these effects with simple lens
systems.

Even without the chromatic aberration of lenses, because
of the wavelength dependence of diffraction, different
frequency components will usually have different spot sizes
in a tightly focused beam. The spatio-temporal behavior
of a polychromatic beam is a subject of theoretical interest.
For example, the so-called isodiffracting beam—the natural
mode of a curved mirror resonator—is found to possess the
property that all frequency components have the same Rayleigh
length, and its spatio-temporal evolution through the focus
was studied by Feng and Winful [102]. Higher-order modes
of isodiffracting pulses have also been studied [103]. The
spatio-temporal behavior of subcycle pulses in a nonparaxial
Gaussian beam has also been studied theoretically by
Saari [104].

While theoretical results are very helpful in giving
guidance to designing a good experiment, in many cases,
the system or the pulse can be too complicated for
an analytical calculation of the spatio-temporal effects.
Numerical simulation, however, is possible for arbitrary optical
systems by combining commercial ray-tracing programs
with wave propagation aspects. This approach has been
successfully employed to calculate the dispersion properties of
arbitrary optical systems [5, 105], as well as spatio-temporal
effects [35].

4.2. Exploiting STCs

In the discussions of section 4.1, we mostly described cases
where STCs appear as side effects and are hence undesirable.
Yet, there are also many cases which benefit from these effects.

One of the most common exploitations of STCs is
the enhancement of phase matching and nonlinear optical
conversion efficiencies via these couplings. In three-
wave mixing experiments, the phase matching is commonly
achieved by adjusting the angle between the input beams in
a birefringent crystal, thereby matching the phase velocities.
The group velocities, however, remain unmatched and this
mismatch limits the efficiency of the process. It was shown
that tilting the pulse fronts of the beams can resolve this
problem and provide both phase and group velocity matched
beams [106]. This is equivalent to angularly dispersing the
beam so that each wavelength enters the crystal at its phase
matching angle [107–110].

As an application of this method, it was shown that
pulses with pulse-front tilt can significantly enhance the
bandwidth of the output pulses in optical-parametric chirped-
pulse amplification experiments [111]. Broadband phase
matching is optimized at a certain angle between the signal
and the pump beams. However, this configuration causes a
strong group velocity mismatch between the two interacting
pulses. Tilting of the pulse fronts of the signal in a
manner to compensate for the angle with the pump provides
matched group velocities over the interaction range. An
analogous approach was also used to generate nearly single-
cycle pulses [112].
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In an analogous application, pulse-front tilt was also used
to enhance the conversion efficiencies in optical-rectification
experiments to generate broadband terahertz radiation [113].
Photon conversion efficiencies as high as 45% were achieved
in this configuration [114].

Spatial dispersion, or the lateral separation of different
frequency components in a beam, can be introduced in laser
cavities to increase the bandwidth after mode locking. Spatial
dispersion reduces the mode competition, favors the mode-
locking process and enhances the bandwidth of the laser (and
yields shorter pulse widths) [115]. Similarly, pulse-front tilt
can also be used in traveling-wave excitation schemes for laser
cavities [14].

‘Temporal focusing’ is a very interesting application
of STCs that has been applied to multiphoton microscopes
to reduce the amount of scanning needed to collect an
image [116, 117]. In this scheme, an ultrashort laser pulse
goes through a diffraction grating and a high-magnification
telescope. Because negative GVD is associated with angular
dispersion imposed by the grating, the pulse experiences a
rapid change of pulse length and spatio-temporal couplings.
Only in one particular focal plane will the pulse be temporally
and spatially well focused, reaching the highest intensity; away
from this focal plane, the intensity quickly drops. Therefore,
the introduction and control of the spatio-temporal coupling
allows much better longitudinal resolution in microscopy
experiments than usual techniques. Characterization of the
temporal focusing set-up has recently been performed using
SEA TADPOLE [118].

Finally, another system in which STCs are generated
and play a helpful role is in a filament generated by an
ultrashort pulse, which is sustained by the balance between
self-focusing in a nonlinear medium and the defocusing
effects of ionized plasma and geometrical divergence [37].
Because self-focusing and ionization are strongly intensity-
dependent, in a non-flat-top beam, radial spatio-temporal
effects are obviously going to be observed in the profile of a
filament. While the spatio-temporal evolution may introduce
complicated temporal and spectral structure, by a careful
choice of experimental parameters, these coupled effects may
favor pulse self-compression and few-cycle pulses can be
generated in this manner [42, 119]. It was shown that the
physics behind self-compression is not the negative dispersion
due to the generated plasma. Instead, it is the spatio-temporal
evolution of the pulse that causes pulse splitting and favors the
self-compression [120].

Recently, effects of STCs on ultrafast laser microma-
chining applications were also studied. It was shown that
these couplings yield interesting effects such as non-reciprocal
structure generation [121, 122].

5. Summary

The nearly ubiquitous nature of space–time couplings in
ultrashort laser pulses and their significant contributions to
light–matter interactions makes these couplings impossible
to disregard. These STCs can be detrimental or beneficial.
Avoiding or minimizing these effects when they are unwanted,

and properly using them when they are to be exploited, requires
understanding their physics and origins. In this review, we
presented a summary of recent work on the description of
STCs. We also elucidated several experimental methods used
to measure these phenomena. Finally, we discussed practical
scenarios where STCs are avoided and made use of. In
short, STCs yield a very rich range of effects and provide
additional, controllable parameters for many applications of
ultrafast phenomena.
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