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Even so-called “complete” ultrashort laser pulse-measurement techniques actually have ambiguities and so are
not truly complete. In particular, the spectral-interferometry technique called scanning SEA TADPOLE measures
the “complete” spatiotemporal intensity and phase of arbitrary ultrashort pulses (using a previously characterized
spatially uniform reference pulse), but the difficulty of maintaining the stability of the required interferometer to
submicron resolution while scanning in space usually blurs the frequency-independent spatial component of the
pulse phase. We show here, however, that this information is actually still contained in the measured SEA TAD-
POLE data, and using a simple Gerchberg–Saxton-like phase-diversity algorithm, it can be recovered from mea-
surements in only two planes, yielding a truly complete spatiotemporal measurement of the pulse field, limited
only by any possible ambiguities present in the reference pulse. © 2012 Optical Society of America

OCIS codes: 100.5070, 320.7100.

1. INTRODUCTION
The measurement of light is one of the most important endea-
vors in science, and much progress has occurred recently in
the measurement of light with ultrafast variations [1]. The ul-
timate goal of optical measurement technology is the mea-
surement of the complete spatiotemporal field of light,
E�x; y; z; t�. Such measurement technology is important in
view of currently evolving techniques for the spatiotemporal
shaping of ultrashort pulses [2–5], which have potential appli-
cations to biomedical imaging, micromachining, and a wide
range of other fields. In addition, efforts to attain ultrahigh in-
tensity for such important applications as laser nuclear fusion
will be stymied if undesired variations in the pulse intensity or
phase versus space or time are present, limiting the actual in-
tensity at the target. Unfortunately, measuring separate pulse
and beam shapes is insufficient, as common optical elements,
such as prisms and lenses, introduce spatiotemporal distor-
tions, in which the temporal field depends on position. These
effects necessitate the measurement of the complete spatio-
temporal field, E�x; y; z; t�, often with submicron spatial reso-
lution and fs temporal resolution. To solve this problem, we
recently introduced a measurement technique called scanning
SEA TADPOLE, which can, in principle, measure the com-
plete four-dimensional electric field, E�x; y; z; t� of ultrashort
pulses with the required spatial and temporal resolutions
[6–11].

SEA TADPOLE is a linear-optical spectral-interferometric
technique that involves spatially sampling the unknown field
with an optical fiber or a near-field scanning microscopy
(NSOM) fiber probe, yielding a spatial resolution approxi-
mately equal to the mode size of the fiber, which can be as
small as ∼50 nm. This sample of the unknown field is inter-
fered with a previously characterized, spatially uniform refer-
ence pulse in a spectrometer, so that E�ω� can be determined

for the fiber location �x; y; z�. Then, in order to measure the
spatial dependence of the field, the fiber is scanned in the
transverse and longitudinal (propagation) directions, so that
E�x; y; z;ω� is measured at each fiber position �x; y; z�, and,
as a result, the complete spatiotemporal field E�x; y; z;ω� is
obtained. This quantity can be Fourier transformed to yield
the complete field versus space and time E�x; y; z; t�. SEA
TADPOLE is also convenient and easy to use because it lacks
the precise alignment required for most interferometric meth-
ods, and, as it does not involve placing the fiber tip in close
proximity to a surface, it lacks the fiber-damage problems of
NSOM. We have used SEA TADPOLE to measure tightly
focused pulses, superluminal Bessel pulses, and pulses dif-
fracted by various apertures, all with ultrahigh spatiotemporal
resolution [6–11].

As we have observed previously, however, SEA TADPOLE
scans in space and uses a fiber interferometer, so it is afflicted
with a slow phase drift (∼1 rad∕s) due to the inherent diffi-
culty of maintaining optics to the required submicron
accuracies while scanning them and also due to small refrac-
tive-index changes in the fibers [6]. Thus, a measurement of
E�x; y;ω�, which can require a minute or more, randomizes
the spatial phase, that is, the zeroth-order spectral-phase coef-
ficient versus transverse position, φ0�x; y;ω0�, in the expan-
sion of the spectral phase versus frequency:

φ�x; y;ω� � φ0�x; y;ω0� � �ω − ω0�φ1�x; y;ω0�

� 1
2
�ω − ω0�2φ2�x; y;ω0� �… (1)

Figure 1 shows a measurement of the observed drift versus
time for the first three terms in the above Taylor series for
the spectral phase at a given point in space, illustrating that
only the zeroth-order, non-frequency-dependent term is
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significantly randomized. All higher-order terms are accu-
rately and stably measured.

This drift did not affect the results of our previous studies,
in which φ0�x; y;ω0� was not of interest, and only intensities
and the frequency-dependent component of the spatiotempor-
al phase were required.

In these studies and in SEA TADPOLE measurements in
general, one simply measures the spatiotemporal field at each
z plane of interest (we typically chose nine values of z). How-
ever, if the spatial phase is also known, the field E�x; y;ω� can
be numerically propagated from one plane to another and, in
principle, one can avoid having to directly measure the spa-
tiotemporal field for all values of z, vastly simplifying the mea-
surement. So it would be very helpful to be able to measure or
retrieve it.

This problem is related to a number of retrieval problems in
purely spatial optics involving monochromatic beams, in
which one or more intensities versus position are measured,
but no information about the spatial phase is measured at all
[12]. If the spatial intensity is measured at only one plane, the
problem is called the phase-retrieval problem, and it can be
solved (the spatial phase, φ0�x; y;ω0�, can be retrieved) if
the problem is two-dimensional and even a fairly weak con-
straint is available, such as that the intensity versus x and
y is zero outside a finite area in a Fourier plane [12]. If the
spatial intensity is measured at two planes related by a Fourier
transform (that is, Fraunhofer diffraction), the problem is
even better behaved, and the well-known Gerchberg–Saxton
(GS) algorithm robustly retrieves the phase, independent of
the dimensionality of the problem [13]. It involves simply
Fourier transforming back and forth between the two do-
mains, replacing the intensity versus position by the measured
quantity in each domain until convergence occurs. Finally, if
the spatial intensity is measured at two planes not related by a
Fourier transform, but instead by the more general Fresnel
transform (sometimes referred to as a fractional Fourier trans-
form), the problem is called “phase diversity,” and algorithms
analogous to the GS algorithm, but using the Fresnel integral,
can be used to find the phase [14].

In monochromatic-light problems, once the spatial intensity
and phase are known in one plane (value of z), the diffraction
integral can find them both everywhere (for all values of z).
On the other hand, for pulses, rather than monochromatic
beams, the problem is more complex because the spatial
phase must be known for all frequencies present in the

inherently nonmonochromatic pulse. And the relative spectral
phase [φ0�x0; y0;ω�] of each monochromatic component of
the pulse at some point �x0; y0� must also be specified. We
have previously introduced and demonstrated a simple holo-
graphic technique (which we call STRIPED FISH) that per-
forms just such measurements—and does so on a single
shot [15–17]. The spatial resolution of STRIPED FISH, how-
ever, is limited to the pixel size of the camera used, so it can-
not measure pulses with submicron spatial resolution, as can
SEA TADPOLE. So it is worth determining how to measure
the complete spatiotemporal field in SEA TADPOLE.

What kind of retrieval problem does SEA TADPOLE corre-
spond to? SEA TADPOLE measures the “complete” intensity
and phase versus frequency at numerous spatial coordinates,
but, as previously mentioned, the zeroth-order phase in the
expansion versus frequency, φ0�x; y;ω0�, is lost due to me-
chanical instability and drifts. This corresponds to the spatial
phase for each frequency present in the pulse, but these
phases are necessarily the same for all frequencies, since
the zeroth-order phase in an expansion with respect to fre-
quency, by definition, is independent of frequency. But this
quantity can vary with position, x and y, so this function of
x and y must then be retrieved.

How can the spatial phase be retrieved in SEA TADPOLE?
It is a phase-diversity problem, but a multicolor one, in which
we know not only the intensity versus the position at two or
more planes, but also all the other phase coefficients at those
planes as well. Thus it is a particularly easy one, most of the
work having been done in the measurements.

Here we show that we can solve the SEA TADPOLE phase-
diversity problem and recover the spatial phase using stan-
dard phase-diversity ideas, making even an unstable SEA
TADPOLE measurement a true complete measurement of
the spatiotemporal field of an arbitrary pulse. Specifically,
to reconstruct the complete spatiotemporal field, we need
only measure the spatiotemporal (or, equivalently, the spatios-
pectral) intensity and phase (minus, of course, the spatial
phase) at one plane and the spatiospectral intensity at an-
other. No phase information is required at all at the second
(or any other) plane.

We should point out that other techniques have been intro-
duced for measuring the spatiotemporal intensity and phase
of pulses that do not randomize the spatial phase [18–20].
Our work is not the first use of the GS algorithm for measuring
the spatiotemporal field of ultrashort laser pulses. Faccio and

Fig. 1. (Color online) Measurement of the drift in the (a) absolute phase, φ0, (b) delay, φ1, and (c) group delay dispersion, φ2, in a typical SEA
TADPOLE measurement. The rms variation of each of the curves, σ, is given with respect to the pulse duration τ. While the phase drift in our
interferometer randomizes the absolute phase, φ0, all higher-order, frequency-dependent terms are unaffected and accurately measured.
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coworkers used it in an elegant approach they call “CROAK,”
which involves two intensity measurements in Fourier planes
in conjunction with a frequency-resolved-optical-gating
(FROG) measurement for additional relative-phase informa-
tion [21, 22]. In one implementation [21], they measured the
intensity versus the transverse position (x) and the frequency
and also versus the transverse angle (θ or kx) and the fre-
quency and performed a one-dimensional GS phase retrieval.
In another, they measured the intensity versus x and t and also
versus kx and ω and performed two-dimensional GS phase re-
trieval [22]. None of these methods, however, achieves submi-
cron spatial resolution. Also, in our experience, redundancy in
the data, which occurs in some of the above methods, but is
especially the case in scanning SEA TADPOLE, is very helpful
in exposing and eliminating systematic error, which is very
common in measurements of such ephemeral events as ultra-
short light pulses.

2. METHOD
Figure 2 illustrates our algorithm. For our initial guess for the
field, we use the measured pulse field at the first plane z1 with
its correct intensity and higher-order phase, but whose zeroth-
order (spatial) phase consists of random values. We propagate
this field (for each wavelength, λ, or frequency, ω) to the next
plane, z2. There we replace the spatiospectral amplitude with
the measured amplitude and then back-propagate the field to
the plane z1, where we again replace the spatiospectral am-
plitude with the measured one. This is repeated until the
rms difference between the measured and propagated ampli-
tudes is minimal, which indicates that the current spatial
phase is the correct value. Unlike the traditional GS algorithm
[23], we (1) use the nonparaxial version of the angular spec-
trum of plane waves (ASPW) and (2) propagate the fields from
one plane to another arbitrary plane [24,25] (rather than the
Fourier transform plane). This allows for measurements from
any two planes to be used (not just the plane just before the
lens and its focal plane, as in traditional GS geometries). We

used the nonparaxial ASPW approach because it works well
for numerical apertures as high as 0.7. Of course, for weak
focusing, the nonparaxial approach is not necessary.

We assume only one transverse spatial coordinate for sim-
plicity and because our previous measurements involved
beams with cylindrical symmetry. We typically measured
E�x; λ� at y � 0 (at nine or more different values of z, the dis-
tance from the focus). But this approach should also be valid
for a measurement versus both transverse spatial coordinates.
Because of the cylindrical symmetry in our problem, the
ASPW reduces to a Hankel transform, which we perform using
the algorithm of Guizar-Sicairos and Gutiérrez-Vega [26] using
the code they kindly provided. Also, unlike standard GS algo-
rithm applications, in which only intensities are known, we
measure the spatiospectral intensity and the phase versus wa-
velength to all orders except the zeroth in multiple planes.
Thus, we have much more information, making our problem
much easier, although we chose not to use all of this addi-
tional information in finding the unknown spatial phase and
instead have used it here to confirm that we have in fact found
the correct spatial phase.

3. EXPERIMENTAL RESULTS
To test our algorithm, we used our previous measurements of
a focusing pulse from a 0.09 NA plano-convex lens [6]. In the
algorithm, we used the fields E�x; λ� measured at z1 �
−1.1 mm and z2 � �0.7 mm, where the positions are given
relative to the position of the focus (z � 0) and whose mea-
sured amplitudes are shown in Fig. 3. The images in the sec-
ond column in Fig. 3 show the intensities obtained by
propagating the field from plane z1 to z2 and vice versa using
the measured spatial phase (i.e., one iteration). The disagree-
ment between these and the measured intensities illustrates
the problems with the (incorrect) measured spatial phase.

After 29 iterations, however, our algorithm converged with
an rms difference between the measured and propagated am-
plitudes of 1.48%. The images in the third column of Fig. 3 are
the propagated amplitudes using the retrieved spatial phase
and are in agreement with the measured images, illustrating
a successful recovery of the spatial phase.

The rms difference between the measured and propagated
amplitude at z � 0.7 mm is shown at the right of Fig. 3, illus-
trating the quick convergence of the algorithm.

To further test our results, we numerically propagated the
field using the corrected spatial phase from z � −1.1 mm to
seven other planes. These results, shown in Fig. 4, are in
good agreement with the measured spatiospectra, shown
above them.

We do not show the retrieved spatial phase because it was
slowly varying and uninteresting. The initial guess for the spa-
tial phase was quite complex (and also uninteresting, as it con-
sisted of random values). We can conclude that the phase-
diversity algorithm is evidently powerful in view of the large
difference between these functions.

Our results illustrate that, by using a simple GS-like phase-
diversity algorithm, we can determine the complete electric
field of ultrashort pulses from our scanning SEA TADPOLE
measurements. Note that we could use the measured spatios-
pectral amplitudes at more than one plane in the algorithm,
but we found that this was not necessary, and the rms error
obtained by using the measured pulses at nine planes was no

Fig. 2. (Color online) SEA TADPOLE spatial-phase-retrieval algo-
rithm. We use the measured spatiospectral intensity and phase,
E�x; λ; z1�, at one plane, z1, and the spatiospectral amplitude at an-
other, z2, to recover the spatial phase φ�x; y;ω0�. On the first iteration,
we use the measured spatiotemporal amplitude and phase for the field
at z1, whose spatial phase is random. This field is propagated to the
plane z2, where we replace the spatiospectral amplitude with the mea-
sured amplitude and use the spatiospectral phase of the propagated
field. Then we back-propagate this to plane z1, replacing the spatios-
pectral amplitude with the measured amplitude at z1. This is repeated
until the rms difference between the amplitudes of the propagated and
measured fields is minimal.
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lower than that obtained using only two. We did find that the
algorithm converged the fastest when we used one plane be-
fore the focus and another after the focus (as we have
done above).

4. DISCUSSION AND CONCLUSIONS
SEA TADPOLE is a linear interferometric method for measur-
ing the spectral phase of an unknown pulse using a spatially
uniform, previously measured reference pulse. By scanning a
fiber across the unknown beam, the spectral phase can be
measured at every position, yielding the spatiotemporal field,
E�x; y;ω� [or equivalently E�x; y; t�]. But without actively sta-
bilizing the interferometer, which uses fibers, the measured
spatial phase is blurred due to a slow drift. Here we have
shown that the spatial-phase information is actually present
in the data, as long as the spatiotemporal field is measured
at at least two longitudinal positions (values of z). We demon-
strated that, using a GS-like phase-retrieval algorithm, the spa-
tial phase can be recovered by numerically propagating the
spatiotemporal field back and forth between the two planes,
and replacing the spatiospectral intensity with the measured

quantity. But unlike the GS algorithm, rather than using the
Fourier transform, we use a (nonparaxial) version of the dif-
fraction integral to propagate the fields, so that any two planes
can be used. Using measurements of a ∼0.1 × NA spherical
lens, we recovered the spatial phase in less than 30 iterations
of the algorithm. To illustrate that we correctly recovered the
spatial phase, we propagated the corrected field E�x; y; t� to
seven other planes, where we had also measured the spatio-
temporal field, and the propagated intensity was in good
agreement with the measured intensity.

This simple extension of SEA TADPOLE allows for the true
complete spatiotemporal field E�x; y; z; t� to be determined by
measuring the field without the spatial phase (i.e., without the
zeroth-order spectral phase versus the transverse position) at
one plane and the spatiospectral intensity at another plane.

This approach could also be used in conjunction with a
wide range of other pulse-measurement techniques that only
measure the field versus time. For example, making individual
FROG measurements [1] of every small spatial region of a
beam in two planes with the help of an aperture smaller
than the beam—or, better, a small nonlinear-optical particle

Fig. 4. (Color online) Measured (top) and numerically propagated spatiospectral intensities using the field from z � −1.1 mm, including the
retrieved spatial phase.

Fig. 3. (Color online) Spatial phase retrieval results. First column: measured spatiospectral amplitudes at z1 (top) and z2 (bottom). Second col-
umn: spatiospectral intensities obtained by propagating the field at z2 to z1 (top) and vice versa (bottom) using the measured spatial phase after
only one iteration. Third column: same as the previous, but using the retrieved spatial phase after 29 iterations. Note the excellent agreement
between the first and last columns.
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[14]—yields a similar spatial-phase retrieval problem. How-
ever, if the pulse-measurement method uses the pulse to
measure itself, rather than using a previously characterized
reference pulse as in SEA TADPOLE, the unknown pulse ar-
rival time versus transverse position, which is the first-order
spectral-phase coefficient, φ1�x; y�, also goes unmeasured and
so would need to be retrieved as well.

Of course, all such measurements could be limited by am-
biguities in the measurement of the reference pulse, such as
possible nonmeasurement of its absolute (zeroth-order)
phase. In any case, with the possible exception of STRIPED
FISH, the combination of SEA TADPOLE and the phase-
diversity approach that we have described herein is, to our
knowledge, the most complete spatiotemporal pulse-
measurement technique ever developed. It certainly provides
the best spatial resolution by more than an order of magnitude
or more.

Finally, it must be admitted that, even if the reference pulse
were completely ambiguity-free, no measurement technique is
truly complete in the most general sense of the term. While
SEA TADPOLE can measure an arbitrary field versus space
and time, we have implicitly assumed a scalar field, that is,
a polarized beam, and our computations (but not our device)
are currently limited to numerical apertures of 0.7. Of course,
two separate measurements at different (orthogonal) polariza-
tions could suffice to obtain the complete polarization depen-
dence, and more general propagation code could achieve even
higher numerical apertures. However, at such tight focusing,
the on-axis field is thought to have a longitudinal component,
which SEA TADPOLE currently does not appear to be able to
measure, providing at least one interesting challenge for
future work.
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