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Measuring the spatiotemporal electric field of
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We demonstrate an experimentally simple and high-spectral-resolution version of spectral interferometry
(SEA TADPOLE) that can measure complicated pulses (in time) at video rates. Additionally, SEA TADPOLE
can measure spatial information about a pulse, and it is the first technique that can directly measure the spa-
tiotemporal electric field �E�x ,y ,z ,��� of a focusing ultrashort pulse. To illustrate and test SEA TADPOLE, we
measured E��� of a shaped pulse that had a time–bandwidth product of approximately 100. To demonstrate
that SEA TADPOLE can measure focusing pulses, we measured E�x ,�� at and around the focus produced by a
plano–convex lens. We also measured the focus of a beam that had angular dispersion present before the lens.
We have found that SEA TADPOLE can achieve better spectral resolution than an equivalent spectrometer,
and here we discuss this in detail, giving both experimental and simulated examples. We also discuss the an-
gular acceptance and spatial resolution of SEA TADPOLE when measuring the spatiotemporal field of a fo-
cusing pulse. © 2008 Optical Society of America
OCIS codes: 320.7100, 260.3160, 320.4550.
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. INTRODUCTION
. Measuring Pulses with Complex Spectral Fields
any applications of ultrashort pulses, from coherent

ontrol [1,2] to multiphoton microscopy [3,4], utilize very
omplicated shaped pulses. To optimize these experi-
ents, it is important to be able to completely character-

ze these complicated pulses. Also, such experiments often
equire the use of feedback loops to select the appropriate
ulse shape, and usually pulse measurement is a neces-
ary part of these loops. Therefore a fast (video-rate)
ulse-measurement technique for measuring shaped
ulses would benefit coherent control experiments.
Only three techniques have proven capable of measur-

ng complex pulses: frequency-resolved optical gating
FROG) [5], cross-correlation FROG (XFROG) [6], and
linear) spectral interferometry (SI). We consider FROG
ethods for measuring complex pulses in a separate pa-

er in this issue [7], but it is worth noting here that
ROG techniques, while quite fast for simple pulses

time–bandwidth product ��10), can be slow (�1 s for
onvergence) when the pulse is complex. SI has the ad-
antage that it is inherently a single-shot technique and
he interferogram can be directly and quickly inverted re-
ardless of the complexity of the pulse. Therefore SI could
n principle be used to measure very complicated pulses
n real time. Another useful property of SI is that it is a
inear technique, and so it is extremely sensitive and can

easure pulses that are approximately 9 orders of mag-
itude weaker than those that can be measured using
onlinear-optical methods [8]. SI’s only fundamental
0740-3224/08/060A81-12/$15.00 © 2
rawback is that it requires a previously measured refer-
nce pulse whose spectrum contains that of the unknown
ulse. Fortunately, when measuring shaped pulses, the
nshaped pulse provides an ideal such reference pulse,
nd it is easily measured using another technique, such
s FROG or its experimentally simpler version, GRE-
OUILLE.
Unfortunately, traditional SI has a few practical limi-

ations that have prevented it from working well for this
pplication. The standard reconstruction algorithm for
I, often referred to as Fourier transform spectral inter-

erometry (FTSI), involves introducing a delay between
he interfering pulses and then Fourier filtering the data
long the time axis. Reconstructing the field in this way
esults in a loss of spectral resolution that is typically a
actor of 5. Thus, very bulky ��1 m� high-resolution spec-
rometers are required for measuring the longer shaped
ulses (which can be as long as 10 ps). Another important
ractical problem with SI is that it has extremely strict
lignment requirements, such as perfectly collinear
eams with similar intensities and identical spatial
odes, so its alignment must be frequently tweaked. SI
ould be very useful for measuring shaped pulses if these

wo problems could be overcome.
Fortunately, it is possible to overcome the loss of reso-

ution experienced with FTSI by crossing the pulses at an
ngle to yield interference fringes versus position, xc
9–14], and measuring a 2D interferogram versus camera
osition �xc� and wavelength ���. In this device, the pulses
re temporally overlapped, so only enough spectral reso-
008 Optical Society of America
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ution to measure the pulse is required (unlike FTSI,
hich requires higher resolution to resolve the spectral

nterferogram). In this case, the measured interferogram
�xc ,�� is given by

S��,xc� = Sref��� + Sunk��� + 2�Sref����Sunk���

�cos�2kxc sin � + �unk��� − �ref����. �1�

n the above equation, � is the half-crossing angle. The
pectral intensity and phase of the unknown pulse can
hen be retrieved from Eq. (1) by Fourier filtering the in-
erferogram along the xc axis, and, as a result, the un-
nown pulse is reconstructed with the full resolution of
he spectrometer [9].

We recently introduced an interferometer based on this
dea, which we call SEA TADPOLE or spatially encoded
rrangement for temporal analysis by dispersing a pair of
ight e-fields [15]. In SEA TADPOLE, in addition to recon-
tructing the unknown field with the full resolution of the
pectrometer, we also use a simple experimental setup
using optical fibers) that makes the device insensitive to
isalignments and easy to use. Using SEA TADPOLE, we

ave shown that pulses with time–bandwidth products
TBPs) as large 400 could be measured, and others have
ince shown that SEA TADPOLE is useful for measuring
haped pulses [16]. Additionally, we even found that, for
any pulses, the spectrum that we retrieve from the in-

erferogram is better resolved than the spectrum that we
easure directly with the spectrometer in SEA TAD-
OLE, and this improvement can be as great as a factor
f 7 (in the sense that the spectral fringe contrast was 7
imes better in the SEA TADPOLE spectrum) [15].

. Measuring the Spatiotemporal Field of Focusing
ulses
early all ultrashort pulses are utilized at a focus, where

heir intensity is high. And in addition to their possible
omplexity in time and frequency, focused pulses can eas-
ly have complex spatiotemporal structure, especially if
ens aberrations are present [17–20]. Simulations have
hown that it is difficult, if not impossible, to avoid group
elay dispersion and pulse lengthening due to lens aber-
ations, which result in radially varying group delay, for
xample. When these distortions are present, adequate
aterial-dispersion compensation is difficult, and the

ulse will not have a transform-limited pulse duration
ven with perfect material-dispersion compensation. This
s especially important in fields such as nonlinear micros-
opy and micromachining. Because the focus can easily
ontain spatiotemporal distortions (and severe ones at
hat), simply making a measurement of the time- or
requency-dependent spectral intensity and phase is not a
ufficient characterization of the pulse; a complete spa-
iotemporal measurement must be made at the focus. And
ecause the pulse can be complex in both space and fre-
uency (time), the measurement technique must have
oth high spatial and high spectral resolution.
Measuring the spatiotemporal field of a pulse at a focus

s a difficult problem, and previous pulse measurement
echniques are only able to measure the focused pulse ver-
us time averaged over space or vice versa [21–23]. With
wo-dimensional spectral interferometry it is possible to
easure the spatiotemporal field of the recollimated fo-
used pulse (by double passing the focusing lens), and this
nformation can be used to numerically backpropagate
he focused pulse to determine the spatiotemporal field at
he focus by dividing the measured phase by 2. Draw-
acks to this approach are that the pulse must be per-
ectly recollimated, it is difficult to measure aberrations
ue to misalignment of the lens, and the method is quite
ndirect: One has to assume that the numerical back-
ropagation is correct [24].
Recently we demonstrated that SEA TADPOLE can be

sed to measure the spatiotemporal field of focusing ul-
rashort pulses [25]. Because the entrance to SEA TAD-
OLE is a single-mode fiber, it naturally measures pulses
ith high spatial resolution, and the measurement can be
ade at the focus. If we use a fiber with a mode size

maller than the focused spot size, then we can make
ultiple measurements of Eunk��� by scanning the fiber

ongitudinally and transversely, so that we measure
unk�x ,y ,z ,�� at and around the focus.

. EXPERIMENTAL DETAILS AND
ETRIEVAL
. SEA TADPOLE Experimental Setup
o measure Eunk��� using SEA TADPOLE, we couple the
eference and unknown pulses into two identical fibers.
he output ends of the fibers are placed close together, so

hat when the light diverges from them, both beams are
ollimated with the same spherical lens (focal length f).
ecause the fibers are displaced from the optic axis (with
distance d between them, which is usually �1 mm), the

ollimated beams cross at angle �, which is equal to d / f,
nd we place a camera at the crossing point in order to
ecord their interference. In the other dimension we use a
iffraction grating and a cylindrical lens to map the wave-
ength onto the horizontal position (as in a conventional
pectrometer) so that we record a 2D interferogram given
y Eq. (1). Figure 1 illustrates the experimental setup.
ote that, when we are using SEA TADPOLE to measure
unk��� of a pulse that is free of spatiotemporal couplings,

he scanning stage shown in Fig. 1 is not necessary (so
his fiber is left stationary, and only one interferogram is
eeded). Typical experimental parameters include a
rossing angle of 0.06 deg; a camera with approximately
06 pixels, each 4.7 �m2 in area; a collimating lens with a
ocal length of 150 mm; and 40 cm long fibers with a mode
ize of 5.6 �m, and we typically build the spectrometer to
ave a range of 80 nm and a spectral resolution of ap-
roximately 0.14 nm (as we will show later). The range of
he wavelength axis can be decreased in order to increase
he spectral resolution simply by using a longer focal
ength cylindrical lens, as in any spectrometer, and the
sual limitations of grating spectrometers apply.
The only requirements on the reference pulse in SEA

ADPOLE are that it be from the same laser so that the
nterfering pulses are coherent (time synchronized), and
ts spectrum must contain that of the unknown pulse
otherwise the spectral-interference term is zero at that
requency). The best reference pulse is generally the pulse
aken directly out of the laser, because this is usually a
patially and spectrally smooth pulse that is easy to mea-
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ure using FROG or GRENOUILLE [26]. The image at
he top of Fig. 1 illustrates this. If it is only necessary to
etermine the phase and spectrum introduced by an ex-
eriment such as some material, a lens, or a pulse shaper,
hen it is not necessary to characterize the reference
ulse.
When using SEA TADPOLE to measure the spatiotem-

oral field, Eunk�x ,y ,z ,��, the scanning stage shown in
ig. 1 is used to move the entrance to the unknown
ulse’s fiber transversely and longitudinally so that mul-
iple interferograms are measured all along the cross sec-
ion and length of the incoming beam. This allows us to

ig. 2. SEA TADPOLE retrieval. The top left image is a typical
nterferogram, which is Fourier transformed from the �–xc to the
–kc domain where only one of the sidebands is then used. This
ideband is then inverse Fourier transformed back to the �–x do-
ain. The result is then averaged over xc, and the reference

ulse is divided out in order to isolate the intensity and phase of

ig. 1. (Color online) SEA TADPOLE experimental setup. A ref-
rence pulse and an unknown pulse are coupled into two single-
ode fibers with approximately equal lengths. At the other end

f the fibers, the diverging beams are collimated using a spheri-
al lens �f�. After propagating a distance f, the collimated beams
ross and interfere, and a camera is placed at this point to record
he interference. In the other dimension, a grating and a cylin-
rical lens map wavelength onto the camera’s horizontal axis
xc�.
econstruct Eunk��� versus x ,y, and z in the focal region,
o that the spatiotemporal field of the focusing beam,
unk�x ,y ,z ,��, can be reconstructed. Scanning the en-

rance fiber to SEA TADPOLE can be used to measure the
patiotemporal field of focusing or collimated beams as
ong as the collimated beam is intense enough to be de-
ected after being sampled by the fiber. As we will discuss
n Section 6, the spatial resolution of scanning SEA TAD-
OLE, or the tightest focus that SEA TADPOLE can mea-
ure with a given fiber, is given by the NA of the fiber,
nd, the fiber that we used had a NA of 0.12. For more
etails about scanning SEA TADPOLE, please see [15].

. Retrieving the Spectrum and Phase from the SEA
ADPOLE Trace
he unknown electric field is reconstructed from the in-

erferogram much like that described in [9,15]. First we
ake a 1D Fourier transform of the 2D interferogram with
espect to the camera’s position axis, so that the Eq. (1)
ecomes

Sref��� + Sunk��� + Eunk���Eref
* ���	�kc + 2

2


�
sin ��

+ Eunk
* ���Eref���	�kc − 2

2


�
sin �� . �2�

s a result, the data separate into three bands (in kc) in
hich each of the two sidebands contains the complex
eld of the unknown pulse, and we can extract the re-
uired information from either of these. The sidebands
re slightly tilted because the argument of the delta func-
ion is wavelength dependent, and hence the fringe spac-
ng in the xc domain is wavelength dependent. Although
e could isolate the unknown spectral field at this point,

t is easier to inverse Fourier transform back to the xc do-
ain where the tilt becomes a small, linear phase term

iven by ��2x sin �� /c���−�0�, which is usually small
nough to neglect. At this point Eunk��� can be obtained in
everal ways (summing, taking one line, or averaging),
nd we have found that what works best (especially in the
resence of noise) is to average the 2D data over xc and
hen divide out the reference electric field. Figure 2 illus-
rates the retrieval of Eunk���.

. Other Issues and Comments
s long as the experimental setup is considered, there is
o direction of time ambiguity in SEA TADPOLE. If the
nknown pulse enters the device from the bottom fiber,
hen the phase difference will have the sign shown in Eq.
1), and it will have the opposite sign if the unknown
ulse enters through the top fiber. It is also necessary to
onsider which interference term (in our analysis we used
he top one) is used in the reconstruction because these
re complex conjugates of one another so their spectral
hase differences have opposite signs as illustrated by Eq.
2).

In previous publications, we have already mentioned
hat a calibration can be performed if the spectral phase
ifference between the two arms of the interferometer is
ot zero (possibly due to different fiber lengths) [15,25].
his is simply done by measuring the spectral-phase dif-
he unknown pulse.
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erence between the two arms of the interferometer when
he unknown arm also contains the reference pulse, and
hen this phase can be subtracted out from all subsequent
easurements. In principle, the phase difference in the

nterferometer as a function of xc and � can be measured
o that any spatial phase difference introduced by the in-
erferometer is also removed. In practice, because an in-
erferometer only measures phase differences and both
eams travel through the same optics and similar fibers,
e find that it is not necessary to do the 2D calibration.

. USING SEA TADPOLE TO MEASURE
HAPED PULSES
revious work has shown that SEA TADPOLE (without
bers) is useful for measuring shaped pulses [16]. To fur-
her demonstrate this, we used SEA TADPOLE to mea-
ure a phase-shaped pulse, which was shaped using a
56-element LCD pulse shaper. For this experiment, we
sed an 85 MHz repetition rate KM Labs Ti:sapphire os-
illator, which had approximately 30 nm of bandwidth.
or the reference pulse, we used the unshaped oscillator
ulse so that the phase difference that we measured with
EA TADPOLE was the phase introduced by the pulse
haper. Figure 3 shows the results of this experiment.
igure 3(b) shows the phase that was applied by the
haper and the phase that was measured by SEA
ADPOLE, and you can see that the two are in good
greement. Figure 3(c) shows the reconstructed spectrum

ig. 3. (Color online) (a) SEA TADPOLE trace for a shaped puls
haper. (c) Retrieved spectrum �S � compared with the spectrom
unk
Sunk���� compared with the spectrometer measurement
Ssp����, where Ssp��� was measured using the spectrom-
ter in SEA TADPOLE by blocking the reference pulse.
ou can see that Sunk��� is essentially a better-resolved
ersion of Ssp��� as is often the case in SEA TADPOLE
we discuss this in detail in Section 5). Figure 3(d) shows
he reconstructed temporal field, and you can see that
his pulse had a TBP of approximately 100. Figure 3(a) is
he SEA TADPOLE trace, and it nicely illustrates that
he curvature of the fringes is the phase difference be-
ween the interfering pulses.

. MEASURING FOCUSING PULSES
n a previous paper we showed that SEA TADPOLE could
ccurately measure the spatiotemporal field of focusing
ulses [25]. Here we have done additional experiments to
urther demonstrate this capability. We measured

unk�x ,�� at nine different longitudinal positions �z� in
he focal region produced by a BK7 lens with a focal
ength of 25 mm. The NA of the focus was 0.085 (using the
/e2 full width of the beam before the lens). The input
ulse had a bandwidth of 30 nm (FWHM), and we used a
M Labs Ti:sapphire laser with a center wavelength of
00 nm. To verify that this measurement was correct, we
ropagated a Gaussian pulse through a lens using the ex-
erimental parameters listed above. For the numerical
ropagation, we used the Fresnel approximation to Huy-

etrieved spectral phase compared with the phase applied to the
pectrum �S �. (d) Retrieved temporal intensity and phase.
e. (b) R
eter s
 sp
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ens integral [27], which is valid for this numerical aper-
ure. Figure 4 displays the results of this experiment.

The simulations and experiments shown in Fig. 4 are
n good agreement. The ripples before the focus are due to
he spherical aberrations introduced by the lens. This
ens also has chromatic aberrations present, which cause
he pulse fronts to be asymmetric about the focus. The
olor in the plots displays the instantaneous frequency
see the color bar in Fig. 4), and it shows that the redder
olors are ahead of the bluer colors, which is due to the
aterial dispersion of the lens. Although there should be

ome color variation due to chromatic aberrations, this is
ot noticeable because it is much smaller than that due to
roup delay dispersion (for an example where this is no-
iceable see [25]). The aberrations in this lens increase
he focused spot size by a factor of 3.

To further demonstrate scanning SEA TADPOLE, we
ocused a beam that had angular dispersion and then
easured the spatiotemporal field in and around the fo-

us. To introduce angular dispersion, we used the −1 or-
er of a ruled reflection grating �300 grooves/mm�, which
e placed just before (by 17.5 cm) the focusing lens. We
lso simulated this experiment by calculating Eunk�x ,��
ust before the lens using Kostenbauder matrices [28,29],
nd then we numerically propagated this beam through
he lens and to the focal region just as described above.
he results of this experiment are shown in Fig. 5. Again,

he experiment and simulation are in good agreement.
ecause a lens is a Fourier transformer, the angular dis-
ersion introduced by the grating becomes spatial chirp
t the focus. As a result, the pulse front becomes flat at
he focus, because the pulse front tilt in this case is due to
ngular dispersion. Because the magnification of the op-
ical system becomes negative after the focus, the order of
he colors and the sign of the pulse front tilt change after
he focus. This measurement essentially shows the pulse
n the focal region of a spectrometer. The lens that we
sed in this experiment is the aspheric lens described in
25].

In these measurements, we found the measured differ-
nce in the interferometer due to the lens at each fiber po-
ition. We did not remove the phase of the reference pulse
n these measurements because we were interested only
n the phase of the focused pulse (the phase introduced by
he lens). This is appropriate for characterizing lenses be-
ause it shows the distortions introduced by the lens for a
iven NA and bandwidth.

The data shown in Figs. 4 and 5 took approximately
0 min to collect.

. SPECTRAL RESOLUTION OF SEA
ADPOLE
. Introduction

n a previous publication [15], and in Fig. 3, we showed
hat the spectrum retrieved from the SEA TADPOLE in-
erferogram �Sunk���� can be better resolved than the
pectrum measured directly with the same spectrometer
hat is used in the SEA TADPOLE device. Experimentally
e make this comparison by measuring the spectrometer

pectrum �Ssp���� simply by blocking the SEA TADPOLE
eference beam, and S ��� comes from the interference
unk
erm as described in Section 2. Our measured SEA TAD-
OLE Sunk��� spectra have exhibited a factor of 7 better
pectral resolution than the corresponding spectrometer
pectra—a significant improvement in spectral resolution
15]. Of course, interferometry can be used to improve
patial resolution as well as spectral resolution [30]. In
pectral interferometry (FTSI) this spectral resolution im-
rovement does not occur (or it is not noticeable). Indeed,
ue to the required pulse separation and Fourier filtering
n the time axis, FTSI actually experiences a spectral-
esolution loss of a factor of �5 [8,31,32].

In the following subsections, we will discuss in detail
he spectral resolution of SEA TADPOLE, which is signifi-
antly better than that of a spectrometer for some pulses
such as a double pulse). Also, there are some cases where
he spectrometer spectrum is more accurate than the SEA
ADPOLE spectrum.

. Simulations
he resolution improvement achieved by interferometry
an be explained by looking at one of the interference
erms, given by Eunk���Eref

* ���. We consider only the case
f a reference pulse with a simple or smooth spectrum
sed to measure a much more complicated unknown
ulse, and for this discussion we will assume that the ref-
rence pulse has a flat spectral phase (although this is not
equired) and that it is at zero delay, which is usually the
ase in experiments. Then the interference term is ap-
roximately equal to Eunk���, or the complex electric field
f the unknown pulse. As a result, SEA TADPOLE di-
ectly measures the unknown electric field, while a spec-
rometer measures 	Eunk���	2, or its magnitude squared.

To see why these two measurements can result in dif-
erent spectra, we must include the effect of the spectrom-
ter’s instrument response function, H���, whose width is
he spectral resolution of the spectrometer �	��. The finite
esolution of the spectrometer effectively smears out or
verages together neighboring frequency components in
he measured quantity, which can be modeled as a convo-
ution [33,34]. Therefore, the spectrometer spectrum is
iven by 	Eunk���	2 � H���, and the SEA TADPOLE spec-
rum is given by 	Eunk��� � H���	2.

From the above expressions, it is immediately apparent
hat, if the amplitude of Eunk is very narrow compared
ith H, and H is a Gaussian, then the measured spectral
idth (or the width of the function that the measured sig-
al is convolved with) will be �2 narrower in SEA TAD-
OLE than with a standard spectrometer (see Fig. 7).
lso consider that the eigenfunction of the convolution op-
rator is exp�i���, so any measurement using SEA TAD-
OLE where Eunk��� is a purely oscillatory function (such
s a double pulse, which is approximately a purely oscil-
atory function when the spacing between two pulses is
onger than the pulse duration of the individual pulses)
ould yield a perfect measurement of the field and hence
lso the spectrum, independent of H, remarkably. Be-
ause a standard spectrometer measurement of such a
pectrum would still be broadened in the usual manner,
EA TADPOLE yields significantly better spectral reso-

ution in this case. In general we expect the improvement
n spectral resolution offered by SEA TADPOLE to vary
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ith the shape of the pulse involved and be somewhere in
he middle of that described for the two cases above.

If we view the effect of finite spectral resolution in the
ime domain, the measured signal versus time is multi-
lied by the temporal response function h�t� [the Fourier
ransform of H���], and we can interpret this as a finite
ime window. Therefore, when using SEA TADPOLE, the
ulse duration of Eunk has to be less than the width of the
ime window, �T. When using a spectrometer, the width
f the pulse’s temporal field autocorrelation �Eunk�t�

� Eunk�t�� has to be less than �T, and most of the time
his will be a wider function than Eunk�t� itself. If we as-
ume that the spectral response function is Gaussian,
hen the width of the time window is related to the spec-
al resolution by �T=2�2 /c	�, which is useful for deter-
ining the spectral resolution needed to measure a given

ulse.
An important difference between SEA TADPOLE and a

pectrometer measurement is that the spectral phase of
unk��� can have no effect on Ssp��� (because standard

pectrometers cannot measure phase information), but
or Sunk��� this is not true. Because SEA TADPOLE re-
olves the complex field, the spectral resolution of the
pectrometer should, in general, be smaller than the

ig. 4. E�x ,z , t� in the focal region of a plano–convex lens. The e
re shown in the bottom plots. Each box displays the amplitude
ocus. The white dots show the pulse fronts, or the maximum tem
eous frequency, which shows that the redder colors are ahead o
mallest feature in the pulse’s spectral amplitude and its
pectral phase (or equivalently, just its complex field) in
rder to make an accurate measurement. Another way to
ay this is that, because the convolution acts on the un-
nown pulse’s complex field, it can mix together the spec-
rum and phase (which can distort the retrieved spectrum
r phase). When the spectral phase has features that are
oo small to be resolved by the spectrometer, then its spec-
rum cannot be accurately measured using the interfer-
meter (nor can its phase), but a spectrometer could still
easure this pulse’s spectrum. Therefore, as long as the

ulse’s complexity comes from its spectrum rather than
ts phase, Sunk��� will essentially always be better re-
olved than Ssp���.

Because the difference in Sunk��� and Ssp��� is pulse de-
endent, this is best illustrated using examples. Figure 6
hows a simulation of how Sunk��� compares with Ssp���
nd the ideal spectrum for six different pulse shapes. In
ig. 6, the white curve shows the actual spectrum, Sunk���

s shown in gray, and Ssp��� is shown in black. In this
imulation, we used a Gaussian spectral response func-
ion with a width of 0.3 nm, and all of the spectra are nor-
alized to have an area of 1.
In Fig. 6(b), which was generated using a double pulse

ental results are displayed in the top plots, and the simulations
electric field versus x and −t at a distance z from the geometric
intensity for each value of x. The color represents the instanta-
luer colors due to material dispersion.
xperim
of the
poral
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such as that generated by a Michelson interferometer),
unk��� is identical to the real spectrum even though the
uration of the double pulse is 50% of the width of h�t�.
his is because double pulses that are approximately
qual to two delta functions in time where one pulse is at
=� and the other pulse is at t=−� are unchanged by the
emporal response function (except by a constant). Or as
tated previously, double pulses are eigenfunctions of the
onvolution operator. As a result, very long double pulses
an be perfectly resolved using SEA TADPOLE. Of course,
he price to be paid is that, when the double pulse is long
ompared with h�t�, the eigenvalue is small, so the mea-
ured field is weak, and the signal can get lost in the noise
15].

Figures 6(a), 6(c), and 6(d) show more typical improve-
ent that we see with SEA TADPOLE, and although

unk��� is not identical to the real spectrum, it is notice-
bly closer to this than Ssp��� is.
Figures 6(e) and 6(f) show two examples in which Ssp���

s identical to the real spectrum and Sunk��� is distorted.
hese are pulses with Gaussian spectra and a sinusoidal
pectral phase [Fig. 6(e)] and a huge amount of chirp [Fig
(f)]. So these pulses have simple spectra (that are easy to
esolve with a spectrometer), but complex spectral phases
hat make their pulse durations very long in time [80% of
�t� for Fig. 6(e) and 140% for Fig. 6(f)]. Therefore Sunk���

s distorted, while a spectrometer can perfectly measure
hese spectra. Although we are accustomed to seeing
meared features in the spectrum when a spectrometer

ig. 5. E�x ,z , t� in the focal region of the beam that had angula
ngular dispersion becomes purely spatial chirp at the focus bec
acks sufficient resolution to make the measurement,
hen SEA TADPOLE lacks resolution to resolve a pulse
ecause it is too long compared with h�t� due to its spec-
ral phase, the distortions look quite different.

The numerical factor for the resolution difference in
sp��� and Sunk��� depends on the exact shape of the
ulse. For a Gaussian spectrum, squaring decreases the
ms width by �2, which is the resolution improvement for
EA TADPOLE in this case (as long as the spectral phase

s relatively small). Figure 7 shows the result of a simu-
ation that illustrates the difference in the Ssp��� and
unk��� for a spectrum that is a very thin Gaussian cen-

ered at 800 nm with a rms bandwidth of 0.1 nm. In Fig. 7
ou can see that, although Sunk��� is affected by the con-
olution, it is closer to the actual spectrum than Ssp���. In
his example, the rms width of Sunk��� is 0.12 nm and, for
sp���, it is 0.16 nm, which is a difference of approxi-
ately �2 as expected.

. Measurements
dditionally we can do some experimental tests of the
esolution of SEA TADPOLE. First we experimentally
easured the temporal response function of the spec-

rometer that we were using. We did this by observing the
ringe visibility of the spectrum produced by an etalon as
e increased the spacing between the two reflectors

reflectivity=57% �, which is similar to the approach used
n [34–36]. Quantitatively the change in visibility is most

ersion. The data is displayed in the same way as in Fig. 4. The
lens is a Fourier transformer.
r disp
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asily determined by Fourier transforming the spectrum
o the time domain and looking at the relative height of a
ideband compared with the central peak. By measuring
his relative height (which is attenuated due to the tem-
oral response function) at different etalon spacings we
an read off the temporal response function of the spec-

ig. 6. Spectrum measured with a spectrometer (black) compare
rum (white) (a) for a train of pulses, (b) for a double pulse, (c) for
c) using shorter double pulses, (e) for a pulse with a Gaussian
ulse. Please note that some of the curves are dashed to show
uantity.

ig. 7. (Color online) Spectrum retrieved from SEA TADPOLE
lightest or green) compared with the ideal spectrum (darker or
ed) and the spectrum measured with a spectrometer (darkest or
lue). For this simulation both the spectral response function
nd the unknown pulse had a width of 0.1 nm.
rometer, and this result is shown in Fig. 8. The left side
f Fig. 8 shows the measured temporal response function
dots) and a curve fit to the data (solid curve) and the rms
idth of h�t� was 3.9 ps (FWHM of 6.2 ps). Because we
now that H��� is a real, symmetric function (we are us-

ng the spectrometer at the design wavelength), we know
hat h�t� is symmetric, and therefore we only measured
ne side of the temporal response function. The right-
and plot in Fig. 8 shows the spectral response function,
hich was obtained by Fourier transforming h�t�, and

his curve has a rms width of 0.14 nm and this spectrom-
ter had a spectral range of approximately 80 nm. There-
ore, if this spectrometer is used in SEA TADPOLE (as-
uming a relatively simple spectral phase) to measure
unk���, the smallest feature in Eunk��� has to be greater

han 0.14 nm, and if the spectrum Ssp��� is measured di-
ectly with this spectrometer, the same restriction applies
o 	Eunk���	2, or the spectrum of the unknown pulse.
nowing the temporal response function is useful for de-

ermining precisely how well pulses can be measured us-
ng a given spectrometer in SEA TADPOLE. Additionally,
he experimentally determined H��� could be deconvolved
rom the reconstructed unknown field in order to further
mprove its resolution.

Figure 9 shows a typical experimental example of how
unk��� differs from Ssp��� using the spectrometer that
as characterized above and an unknown pulse compris-

ng a train of pulses produced by an etalon. The left plot
n Fig. 9 shows Ssp��� and Sunk���, and when comparing
he two spectra we can see just as in Fig. 6(b), that Sunk���
s a better-resolved version of S ���. To verify that S ���

that measured with SEA TADPOLE (gray) and the actual spec-
of three double pulses with different delays, (d) for the same as

um and a sinusoidal phase, and (f) for a very chirped Gaussian
wo curves are overlapping. In all cases, the color indicates the
d with
a sum

spectr
that t
sp unk
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s more accurate than Ssp���, we combined each of these
pectra with the spectral phase that we retrieved from
he SEA TADPOLE trace and Fourier transformed this to
he time domain, and the right-hand side of Fig. 9 shows
his result. Because we used an etalon with two identical
7% reflectors, the height of the second two peaks in the
emporal intensity should be 0.33 and 0.11, respectively,
o clearly the result from SEA TADPOLE is the more ac-
urate one.

ig. 8. The plot on the left shows the temporal response func-
ion that we measured (dots) using an etalon and the solid curve
s a fit to this data. The plot on the right shows the Fourier trans-
orm of h�t�, which is the spectral response function. Note that
e only measured this h�t� on one side of the time axis because
e expect it to be a symmetric function because H��� is a real

unction.

ig. 9. (Color online) Experimental example of Sunk��� versus
sp���. For this example we used an etalon with two identical re-
ectors both having a reflectivity of 57%. The plot on the right
hows the two spectra where the darker (blue) one is Ssp��� and
he lighter (green) one is Sunk���. The plot on the right shows the
emporal intensity that was computed using Ssp��� (darker or
lue curve) and Sunk��� (lighter or green curve). Because we know
hat these relative amplitudes should be, we can verify that the

ighter (green) curve is more accurate than the darker (blue)
urve.
Figure 3(c) (which was discussed in Section 3) shows
nother experimental example of how Ssp��� compares
ith Sunk���, which represents a significant improvement
nd illustrates the typical improvement that we expect
or complicated pulses.

. Other Issues and Comments
nother issue that must be considered when retrieving

he spectrum from the SEA TADPOLE interferogram is
he delay, or the location of 	Eunk�t�	 underneath the tem-
oral window. For example, if the unknown pulse is de-
ayed with respect to the reference pulse (which is at zero
elay) by �, then the interference term becomes Eunk�t
�� � h�t� and is no longer centered underneath the tem-
oral response function. Because the temporal window is
attest at its center, the unknown field will be more dis-
orted by the temporal response function if it does not
ave a mean of zero because it will then be multiplied by
steeper part of h�t�. To illustrate this, we performed a

imulation, making SEA TADPOLE traces for a double
ulse at several different delays. The temporal intensity
nd spectra retrieved from these three traces are shown
n Fig. 10. The bottom plot in Fig. 10 shows h�t� (dashed
urve), the ideal temporal intensity (dark curve), and the
econstructed temporal intensity (light curve), which is
Eunk�t�	h�t�. The higher plots show the reconstructed tem-
oral intensity when the unknown pulse was delayed by
ps (middle) and 2 ps (upper), and these results are
uch more distorted than the result of the zero-delay in-

erferogram. It is evident that it is important to measure
he SEA TADPOLE interferogram at zero delay in order

ig. 10. (Color online) Variation in the reconstructed temporal
ntensity with delay (simulation): The bottom plot on the left
hows the temporal response function, the reference pulse and
he real (light or green curve) and the reconstructed temporal in-
ensities (dark or blue curve). The top two left plots show how the
econstructed temporal intensity becomes distorted as the un-
nown pulse is delayed. The plots on the right are the spectrum
etrieved from SEA TADPOLE at the three different delays. For
his simulation we used an unknown pulse with a Gaussian spec-
rum (rms bandwidth of 8.5 nm) and a sinusoidal phase (with a
requency of 2500 fs−1).
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o minimize the damage done by the spectrometer’s re-
ponse function, and this becomes more important as the
uration of the unknown pulse becomes close to the width
f the temporal window.

. SPATIAL RESOLUTION OF SEA
ADPOLE
. Introduction
hen using scanning SEA TADPOLE to collect spatial in-

ormation about a focusing pulse, a few questions arise.
or example, what is the spatial resolution achieved by
ampling the beam with a fiber, and what is the accep-
ance angle of the fiber? In a previous paper [25], we ar-
ued that these two questions are equivalent in SEA
ADPOLE, and so if a SEA TADPOLE device has suffi-
ient spatial resolution to sample a given focus, then it
lso has sufficient angular acceptance to measure that fo-
us. In this section we consider this issue in more detail,
urther clarifying this point.

. Spatial Resolution and Acceptance Angle of a Single-
ode Fiber

o determine the acceptance angle and spatial resolution
f the fiber, we consider the effect of the fiber’s finite spa-
ial resolution as a convolution just as we did with the
pectral resolution. For this discussion, we will ignore the
ffects of the finite spectral resolution. The measured spa-
iotemporal field in SEA TADPOLE is given by
�x ,��unk � H�x�, and we will assume that the fiber’s spa-

ial resolution along the x and y axes is the same so that
e can consider only one transverse spatial dimension.
ow if we Fourier transform the resolved field to the k do-
ain, we have E�k ,��unkh�k�, where h�k� is the Fourier

ransform of H�x�. The function h�k� can be viewed as an
ngular window, just as the temporal response function
orms a time window. This product of the field with the
ngular response function is zero anywhere that h�k� is
ero, so only a certain range of k vectors will be coupled
nto the fiber. Therefore, because the fiber has a finite
patial resolution, it will also have a finite acceptance
ngle, and knowledge of the spatial resolution will yield
he acceptance angle and vice versa.

To determine the acceptance angle of a single-mode fi-
er, we calculate the power transmitted into the fiber:

T = 
� dy� dxEfiber�x,y�Eunk
* �x,y��2

. �3�

his integral is a measure of the spatial overlap of the
ode of the fiber with the mode of the unknown pulse

37,38]. Efiber�x ,y� is approximately equal to a Gaussian
ith a width (full width at e−1) equal to the single-mode
eld diameter d of the fiber. For a Gaussian beam with a
aist size (diameter) w (where w�d) with an incident
ngle into the fiber (with respect to the fiber axis) of �, it
as been shown [38] that the power coupled into the fiber
s a function of � is given by
T��� = � 2dw

d2 + w2�2

exp
−
2�
wd��2

�w2 + d2��2� . �4�

o isolate the effects of transmission loss due to a poten-
ially large incident angle, we consider the power trans-
itted over the cross-sectional area of the incoming beam

verlapping with the fiber’s core by setting d to w so that
q. (4) becomes

T��� = exp
−
�
d��2

4�2 � . �5�

quation (4) shows that the transmission of the unknown
ulse into the fiber has a Gaussian dependence on the in-
ident angle. If we take the acceptance angle of the fiber
max to be the full width of T��� at e−2, then we find that it
s given by 2� /
d. The angular window h�k� is identical to
��� (where �
k�0 /2
), and the fiber is a Gaussian an-
ular filter. Thus, as long as we measure pulses whose
As are less than 2� /
d, Eunk�x ,�� will experience mini-
al angular filtering and be accurately sampled by the fi-

er because T��� is relatively flat in this region.
Because we know that the spatial response function is
Fourier transform of h�k� we can write it as follows:

H�x� = exp
−
�2x�2

d2 � . �6�

f we take the spatial resolution of the fiber to be the full
idth of H�x� at e−2, then we get the expected result that

t is equal to the mode diameter of the fiber �d�.
Because H�x� and h�k� are a Fourier pair, �max is re-

ated to the mode diameter as shown above, so we can see
hat the acceptance angle of the fiber is determined by the
ode diameter. Therefore, if we require that the focusing

ulse to be measured has a NA that is less than the ac-
eptance angle of the fiber, then we get the condition that

2�


w
�

2�


d
, �7�

here we have assumed that the focusing pulse is Gauss-
an with a focused spot diameter of w. From the above
quation, we can see that this requirement on the NA is
quivalent to requiring that the mode diameter of the fi-
er be smaller than the focused spot size of the pulse,
hich is necessary if we are to spatially resolve the in-

oming pulse. Therefore, if we use a fiber with sufficient
patial resolution for a given focus, then it will also have
sufficient angular acceptance. This result is equivalent

o what we have intuitively argued in a previous paper
25].

In the above discussion we assumed that the incoming
aussian beam was free of aberrations. Because aberra-

ions will only increase the size of the focus, requiring
hat the fiber mode be less than the size of the focus when
o aberrations are present will be sufficient. And if aber-
ations are present, the fiber will still accurately sample
he focus.

As we have explained in Section 5, we find that it can
e advantageous to measure the spectrum using the in-
erferogram rather than directly measuring it because the
pectral resolution of SEA TADPOLE can be better than
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hat of a spectrometer. Because we also interferometri-
ally measure the spatial component of the focusing pulse
we reconstruct E�x ,y ,z ,��], we also achieve the same
patial-resolution improvement in SEA TADPOLE com-
ared with direct measurements of I�x ,y ,z� using the
ame fiber.

. CONCLUSIONS
e have discussed a new technique (SEA TADPOLE) for
easuring the spatiotemporal electric field of pulses that

re complicated in space and/or time. SEA TADPOLE
ses a simple experimental setup; uses a fast, direct re-
rieval algorithm; and has both high spectral and spatial
esolution. We demonstrated that SEA TADPOLE can
easure shaped pulses like those used in coherent control

xperiments. We also showed that SEA TADPOLE can
easure the spatiotemporal field of a focusing pulse, and
e illustrated this by measuring a focus with a NA of
.085 produced by a plano–convex lens.
With simulations and measurements we illustrated

hat the spectrum reconstructed from a SEA TADPOLE
race is often better resolved than that measured directly
ith the same spectrometer. We showed that, when using
EA TADPOLE to measure a pulse, the spectrum is least
istorted when there is no delay between the reference
nd unknown pulses.
We explained that, when using SEA TADPOLE to mea-

ure the spatiotemporal field of a focusing pulse, the NA
f the focus has to be less than the NA of the fiber. We
howed that this requirement is equivalent to requiring
he focused spot size to be larger than the fiber’s mode
ize.
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