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We give a simple general formula for the total angular dispersion due to multiple arbitrary dispersive
elements in a series. It is simply the sum of the individual elements’ angular dispersions but with each
divided by the total spatial magnification afterward (or, equivalently, multiplied by the total angular
magnification afterward). © 2010 Optical Society of America
OCIS codes: 080.2468, 080.2730, 320.0320.

1. Sequences of Dispersive Elements

Multiple dispersive elements in sequence are com-
monly used for beam magnification and wavelength
tuning in lasers [1–6], ultrashort-laser-pulse com-
pression [7–14], and applications in which a single
element yields too little or too much angular disper-
sion or magnification. Also, many devices involve the
use of multiple passes through a single dispersive
element or combinations of elements [11,14], which
is effectively the same problem.

Unfortunately, formulas in the literature for mod-
eling these devices are quite complex and unintuitive,
and they cannot be generalized to cover all the disper-
sive elements; see, for example, [15].

Herewepresent a very simple equation for the total
angular dispersion introduced by a sequence of arbi-
trary dispersive elements, such as prisms, gratings,
and etalons, in terms of their respective angular dis-
persions and spatial or angularmagnifications,which
seems to have escaped notice in the literature and
textbooks [16–23]. It is a generalization of a result
first obtained by Trebino for a sequence of prisms
[4]. We derive this more general result using the
Kostenbauder matrix formalism. In addition, we
use it to model a prism-grating pulse compressor, in

which a prism and grating are quadruple passed,
an otherwise prohibitively difficult problem.

2. Theory

We first note that the expression for the dispersion
[18], D, of a single general prism is

D ¼
�
dn
dλ

sinðϕÞ
cosðθÞ =

cosðγÞ
cosðβÞ

�
þ dn

dλ
sinðβÞ
cosðϕÞ ; ð1Þ

where n is the refractive index, λ is the wavelength, θ
is the incidence angle of the beam at the entrance
face, ϕ is the transmitted angle of the beam at the
entrance face, β is the incidence angle of the beam
at the exit face, and γ is the transmitted angle of
the beam at the exit face; see Fig. 1. Note that
cosðγÞ= cosðβÞ is the beam spatial magnification at
the exit face, and the other quantities are the disper-
sions at the two individual faces. Thus, this expres-
sion can be rewritten very simply as the sum of the
dispersions at the first (d1) and second (d2) faces, but
with that of the first face divided by the spatial mag-
nification that occurs at the second (m2):

D ¼ d1

m2
þ d2: ð2Þ

In fact, the same is true for the dispersions and mag-
nifications of sequences of whole prisms, and Trebino
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has shown (by simplifying an expression in [5] writ-
ten in terms of the angles) that the total dispersion
due to a sequence of N prisms is given by [4]

Dtotal ¼
D1

M2M3 � � �MN
þ D2

M3M4 � � �MN
þ � � � þDN ;

ð3Þ

where Di andMi are the angular dispersion and spa-
tial magnification of the ith prism, respectively. In
this expression and in what follows, the dispersion
is taken to be negative if the element is inverted.

We can easily generalize this expression to arbi-
trary numbers of arbitrary dispersive elements. To
do so, recall that the propagation of an ultrashort
pulse through a sequence of dispersive devices can
be modeled using the Kostenbauder matrix (K ma-
trix) formalism [24]. In this formalism, each disper-
sive element is represented by a 4 × 4 ray–pulse
matrix, analogous to the well-known 2 × 2 ray-matrix
formalism for geometric optics but now including
time and frequency, in addition to position and angle.
K matrices also allow for spatiotemporal distortions,
such as angular dispersion. An entire optical system
consisting of multiple geometric and dispersive ele-
ments can be described by the product of the indivi-
dual 4 × 4 K matrices.

In general, a K matrix for a linear, time-invariant,
and nonfocusing dispersive device will have certain
elements that are always zero and one, as shown
by Kostenbauder. The other matrix elements depend
on the device parameters. These matrix elements
correspond to the magnification (M), position versus
angle (B), dispersion (D), spatial chirp (E), group-
delay dispersion (I), time versus angle (H), and the
pulse-front tilt (DM=λ0) introduced by the optic:

K ¼

2
6664

M B 0 E
0 1=M 0 D

DM=λ0 H 1 I
0 0 0 1

3
7775: ð4Þ

Consider first a grating as the dispersive element.
The beam magnification by the grating is given in

terms of the incidence angle, θ, and the diffraction
angle, γ, both measured from the surface normal:

M ¼ −

cos γ
cos θ : ð5Þ

The angular dispersion introduced by a grating is
given by

D ¼ sin γ − sin θ
f 0 cos γ

; ð6Þ

where f 0 is the center frequency of the pulse in cycles
per second.

In terms of these quantities, the K matrix for a
grating is

Kgrating ¼

2
6664

M 0 0 0
0 1=M 0 D

DM=λ0 0 1 0
0 0 0 1

3
7775: ð7Þ

Now consider a pulse diffracted by N gratings se-
quentially. In the following, we omit the K matrices
representing free-space propagation because they
add no angular dispersion or magnification and,
therefore, contribute nothing to the quantities of in-
terest. The K matrix representing this system is ob-
tained by multiplying together the matrices of each
individual grating:

2
6664

MN 0 0 0
0 1=MN 0 DN

DNMN=λ0 0 1 0
0 0 0 1

3
7775 � � �

2
6664

M1 0 0 0
0 1=M1 0 D1

D1M1=λ0 0 1 0
0 0 0 1

3
7775

¼

2
6664

Q
N
n¼1 Mn 0 0 0
0 1=

Q
N
n¼1 Mn 0

P
N
n¼1 Dn=

Q
N
p¼nþ1 MpP

N
n¼1 Dn

Q
n
p¼1 Mp=λ0 0 1 0

0 0 0 1

3
7775: ð8Þ

Fig. 1. (Color online) Prism, beam, and their relevant angles;
dashed lines are normals to the prism faces.
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This expression can easily be proved usingmathema-
tical induction.

From the above K matrix for the system of grat-
ings, the total dispersion is given as

Dtotal ¼
XN
n¼1

DnQ
N
p¼nþ1 Mp

; ð9Þ

which is the dispersion expression for multiple
prisms first derived by Trebino [4].

Next, we generalize this result to an arbitrary se-
quence of potentially different dispersive devices (see
Fig. 2), including arbitrary prisms, reflection or
transmission gratings, tilted interfaces, or etalons.

As before, the Kmatrix for the entire system of dis-
persive elements is given by the product of the K ma-
trices of each individual element. In this product, we
again ignore the free-space propagation between the
elements because it does not contribute any disper-
sion or magnification. This calculation is shown be-
low, and as before it can be proved by mathematical
induction:

2
6664

MN BN 0 EN

0 1=MN 0 DN

DNMN=λ0 HN 1 IN
0 0 0 1

3
7775 � � �

2
6664

M1 B1 0 E1

0 1=M1 0 D1

D1M1=λ0 H1 1 I1
0 0 0 1

3
7775

¼

2
6664

Q
N
n¼1 Mn Btotal 0 Etotal
0 1=

Q
N
n¼1 Mn 0

P
N
n¼1 Dn=

Q
N
p¼nþ1 MpP

N
n¼1 Dn

Q
n
p¼1 Mp=λ0 Htotal 1 Itotal

0 0 0 1

3
7775: ð10Þ

Examining the elements of the above matrix, we see
that the total magnification and angular dispersion
of the system are given by

Mtotal ¼ M1M2M3 � � �MN ; ð11Þ

Dtotal ¼
D1

M2M3 � � �MN
þ D2

M3M4 � � �MN
þ � � � þDN :

ð12Þ

Finally, we note that the beam angular magnifica-
tion, μi ¼ 1=Mi, is the reciprocal of the spatial mag-
nification; hence, this expression can be written
perhaps even more simply and intuitively in terms
of this latter quantity as

Dtotal ¼ D1μ2μ3 � � � μN þD2μ3μ4 � � � μN þ � � � þDN :

ð13Þ

This is quite intuitive because the angular dispersion
undergoes angular magnification at the later ele-
ments. We caution the reader that other elements
of the combined system cannot be obtained from
our analysis [Eq. (10)] unless they do not depend
on the separations between the elements, as we have
neglected the relevant propagationmatrices between
the elements.

3. Example: Modeling of Single-Prism–Grating Pulse
Compressor

As an example, we can use Eqs. (11) and (12) to de-
termine the magnification and angular dispersion in-
troduced by a recently developed pulse compressor
that involves quadruple passing a prism and grating;
see Fig. 3.

A single-prism–grating compressor uses a combi-
nation of a prism and a reflection grating as the dis-
persive element. After the first pass through both of
these elements, the beam is reflected precisely back
using a corner cube, which inverts the beam and dis-
places it vertically for the second pass. After the first

two passes, a roof mirror returns the beam for its fi-
nal two passes in the same fashion. In all, the device
involves four passes through the grating and eight
though the prism. Each pass through the prism–

grating pair can be divided into three parts as the
pulse goes through the prism (referred to as prism
1 in this section), the grating, and then the prism
again (referred to as prism 2 in this section). The

Fig. 2. (Color online) Sequence of dispersive optics with their
respective dispersions and magnifications.
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magnification M on each pass is just the product of
the three individual magnifications.

To perform this calculation, we note that inverting
the beam or inverting the dispersive device induces
sign reversals of certain elements in the correspond-
ing K matrix, including those for the added spatial
chirp, angular dispersion, pulse-front tilt and time
versus angle:2
6664

M B 0 E
0 1=M 0 D

DM=λ0 H 1 I
0 0 0 1

3
7775→

2
6664

M B 0 −E
0 1=M 0 −D

−DM=λ0 −H 1 I
0 0 0 1

3
7775:

ð14Þ
From Eq. (11), the magnification of each prism–

grating combination is given by

M ¼ Mprism1MgratingMprism2: ð15Þ

The angular dispersionD introduced on the first pass
through the prism–grating pair is given by the dis-
persion equation, Eq. (12), which yields

D ¼ Dprism1

MgratingMprism2
þ Dgrating

Mprism2
þDprism2: ð16Þ

Another useful result that we require and one that is
easy to show is that, if a dispersive component of
combination thereof has dispersion D and magnifica-
tion M in the forward direction, then it has disper-
sion MD and magnification 1=M in the reverse
direction. This can be verified by interchanging the
input and the output angles in expressions for disper-
sion and magnification introduced by each device.
Using this result and accounting for the beam inver-
sion by the corner cube, the angular dispersion added
on each pass through the prism–grating pair is

M1D1 ¼ −D2 ¼ −M3D3 ¼ D4; ð17Þ

where Di is the dispersion on the ith pass, and

M1 ¼ 1
M2

¼ M3 ¼ 1
M4

: ð18Þ

To calculate the total dispersion added by the com-
pressor, we again use the same result as in Eq.
(12), but this time for a sequence of prism–grating
pairs as they are encountered by the pulse on each
pass:

Dtot ¼
D1

M2M3M4
þ D2

M3M4
þ D3

M4
þD4: ð19Þ

After substituting values from Eqs. (17) and (18), we
find that the total angular dispersion added by the
device is precisely zero for all angles of incidence,
which is a requirement for a pulse compressor to op-
erate properly. Additionally, the total magnification
is unity, also appropriate for a pulse compressor’s
proper operation. To calculate the group-delay dis-
persion added by this compressor, we simply require
the angular dispersion introduced in the first pass
and the length of the path taken by the pulse before
the second pass. Using Eq. (16), we can calculate the
angular dispersion of the combination of elements,D,
and then the GDD is given by

GDD ¼ −

2D2L
λ0

; ð20Þ

where the distance traveled by the pulse inside the
dispersive element is assumed to be ≪L.

4. Conclusions

In conclusion, we have shown that the total angular
dispersion due to multiple dispersive elements is the
sum of the individual dispersions, with each divided
by the total magnification occurring afterward (or
multiplied by the total angular dispersion occurring
afterward). This simple result yields a more intuitive
understanding of the dispersive properties of several
dispersive elements when used together and should
greatly simplify the modeling of devices that contain
such elements.
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