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We demonstrate a single-shot measurement technique based on spectral interferometry (SI) for measuring
the complete intensity and phase vs. time of extremely complex ultrashort laser pulses. Ordinarily, such a
method would require an extremely-high-resolution spectrometer, but, by temporally interleaving many SI
measurements, each using a different reference-pulse delay, our method overcomes this need. It involves
introducing a transverse time delay into the reference pulse by tilting its pulse front transversely to the
spectrometer dispersion plane. The tilted reference pulse then gates the unknown pulse by interfering with it
at the image plane of a low-resolution imaging spectrometer, yielding an effective increase in the delay range
and spectral resolution—by a factor of 30 in our proof-of-principle implementation. Our device achieved a
temporal resolution of ~130 fs and a temporal range of 120 ps. This simple device has the potential tomeasure
even longer and more complex pulses.

© 2011 Elsevier B.V. All rights reserved.

1. Complex ultrafast waveforms and their measurement

Recently there has been significant effort in the field of optical
arbitrary-waveform generation [1], where a goal is to generate
~10 ns-long pulses with b100 fs structure. At the same time, this
effort is also driving the field of optical metrology to develop new
high-temporal- and high-spectral-resolution techniques [2–8] to
measure such extremely complex waveforms.

The challenge in such measurements is attaining a large enough
temporal range to measure the large temporal extent of the pulse,
while simultaneously achieving a high temporal resolution to
measure the fine temporal structure of the pulse. Alternatively,
analogous spectral range and resolution conditions must be met if the
measurement is performed in the frequency domain. Unfortunately,
no measurement technique exists that can accomplish this—and to do
so on a single shot, an additional requirement for measuring a true
arbitrary waveform.

The measure of the complexity of a pulse is the time-bandwidth
product, TBP=Δt Δν, where (in this work) Δt is the FWHM of the
pulse temporal intensity and Δν is the FHWM of the pulse spectrum.
Using the above numbers, arbitrary-waveform generation can yield
pulses with TBPs of ~100,000. For theirmeasurement, commonly used
self-referenced methods do not suffice, as they can characterize only
very simple ultrashort pulses directly out of lasers. Of such methods,
to our knowledge, only frequency-resolved optical gating (FROG) can

measure pulses with time-bandwidth products greater than ~10. But
self-referencing is unnecessary for most complex pulses, as complex
pulses are usually generated from simpler pulses using an additional
apparatus, so that an easily measurable reference pulse is available to
assist in measuring the complex pulse.

When such a pre-characterized reference pulse is available, cross-
correlation FROG (XFROG) has measured (continuum) pulses with
TBPs up to 5000 [9]. Alternatively, sonogram methods [10–12]—
mathematically equivalent to the spectrogram generated in XFROG
[9]—are capable of similar-complexity measurements. But it would be
difficult to extend these methods to pulses with much larger TBPs due
to the very large data sets involved (N2 points, whereN is the length of
the pulse field vector).

Additionally, several time-domain techniques based on temporal
imaging can measure the temporal intensity of ps pulses [6,7] by
stretching them to many ns in length, where detectors and
oscilloscopes can accurately measure their intensities vs. time for
potentially very complex pulses. In addition, high-bandwidth oscillo-
scopes and streak cameras can also measure the temporal intensity of
longer, ps and ns, pulses. Heterodyning with a delayed version of the
pulse or with another known pulse can yield the phase. Several
techniques use this approach, including a variety of additional
processes, such as four-wave-mixing in fibers [12]. However, these
techniques involve a complex apparatus and/or expensive and fragile
electronics.

In general, FROG and sonogram techniques have the great
advantage that they involve two-dimensional data traces, which
provide redundancy and internal corroboration of the measurement.
But in the effort to measure extremely complex pulses, sacrifices must
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be made, and this otherwise attractive feature is expendable. One
technique that makes this sacrifice and has the potential to measure
very complex waveforms is spectral interferometry (SI) [13]. In its
simplest form, SI involves measuring the spectrum of the sum of two
fields, that of a reference pulse and an unknown pulse. The result is a
spectral interferogram from which both the amplitude and phase of
the unknown pulse can be retrieved, provided that the reference pulse
is known.

Although in principle SI is simple and high spectral resolution, in
practice it is neither. Because it requires collinear pulses, it is very
difficult to align and maintain aligned. And because it typically
requires the reference pulse to be separated in time from the
unknown pulse in order to make the spectral fringes required for
pulse retrieval, its spectral resolution is limited to a factor of about five
worse than that of the spectrometer used [14].

There have been numerous variations of SI, and some have
improved its spectral resolution. For example, dual-quadrature SI
(DQSI) [3,15], and even quadruple-quadrature SI (FQSI) [3], eliminate
the pulse separation, but at a price of additional complexity and
alignment sensitivity. Recently, Fontaine et al. demonstrated a
“spectral interleaving” DQSI using multiple high-bandwidth oscillo-
scopes [3], which measure multiple spectral pieces of the pulse and
concatenate them together. This technique offers a large temporal
range: several microseconds. However, the temporal resolution is
limited by that of the photo-detector and oscilloscope to about ~20 ps
and so is inapplicable to ultrafast arbitrary waveform measurement.
Alternatively, Asghari et al. demonstrated a time-domain variation of
DQSI with 400 fs temporal resolution and 350 ps temporal range and
used it to measure pulses with TBPs ~900. They achieved this by
linearly chirping the pulse under test by a known (and large) amount,
thereby mapping the individual spectral components of the pulse to
time at an oscilloscope. Although this technique can be scaled to
measure longer pulses with very fast update rates and high temporal
resolution, it requires very accurate characterization of the dispersive
medium in order to accurately map frequency to time.

It has also been proposed to significantly increase the finesse (and
hence the measurable pulse complexity) of SI by using a variation of
an echelle-type spectrometer that consists of a highly dispersive
etalon with its dispersion orthogonal to that of the spectrometer
diffraction grating [16], which yields a rectangular array that raster-
scans the spectrum across the rectangular camera—a promising
approach for measuring very complex pulses on a single shot. Its
spectral resolution and accuracy are only limited by higher-order
spectral variations of the dispersive elements, which could perhaps be
compensated either optically or numerically.

Alternatively, it has been asserted that “time interleaving” [17]
(measuring temporal pieces of the pulse separately and then
concatenating them) could be the solution to the problem of
measuring complex pulses on a single-shot. In previous work, we
demonstrated a multi-shot time-interleaving technique that we call
MUD TADPOLE. It has the ability to measure pulses with extremely
large TBPs, and we have used it to measure pulses with TBPs of 65,000
[8]. MUD TADPOLE is a simple temporal scanning version of SEA
TADPOLE [18–23], which is an experimentally simplified variation of
SI that involves crossing at an angle the pulse to be measured with the
previously measured reference pulse, which greatly simplifies
alignment. The crossed beams generate a spatial interferogram
[24,25]—unlike standard SI, which generates a spectral interferogram
(the cause of the loss of spectral resolution), fromwhich the unknown
pulse's intensity and phase can be retrieved by spatially filtering the
measured interferogram without loss of spectral resolution.

In this paper, we demonstrate a single-shot version of MUD
TADPOLE, to our knowledge, the first single-shot technique for
measuring complex waveforms that temporally interleaves many
measurements with sub-ps temporal resolution and potentially
nanosecond temporal range.

2. SEA TADPOLE and MUD TADPOLE

As mentioned, MUD TADPOLE shares a simple, yet powerful,
feature with SEA TADPOLE and other crossed-beam SI methods: the
required numerical filtering is accomplished using spatial fringes,
rather than spectral fringes. Thus rather than separating the unknown
and reference pulses in time, these methods separate them in angle.
While SEA TADPOLE requires that the reference pulse at the output of
the spectrometer (which expands inside the spectrometer to the
reciprocal of its spectral resolution) be longer than the pulse to be
measured, MUD TADPOLE does not make this assumption and instead
takes advantage of the fact that the reference pulse generates spatial
fringes onlywith the temporal piece of the unknown pulse withwhich
it temporally overlaps. This allows multi-shot MUD TADPOLE to
temporally scan the delay of the reference pulse, making numerous
SEA TADPOLE measurements, something not possible in standard
Fourier transform SI (FTSI), in which a large delay is required between
the reference and unknown pulses.

We continue to exploit this advantage in single-shot MUD
TADPOLE, making multiple SEA TADPOLE measurements at multiple
delays—but on a single shot. We accomplish this by crossing the
unknown pulse with a reference pulse with significant pulse-front tilt
(PFT), generating a spatial interferogram similar to that obtained in
SEA TADPOLE, except that now the delay varies spatially in the
direction perpendicular to the spectral dispersion plane (see Fig. 1).
Then a lens images the grating, mapping time to position at the
camera.

Imaging the face of the grating onto the detector of the imaging
spectrometer ensures that spatial dispersion (spatial chirp) is absent
there and the main spatio-temporal distortion in the reference pulse
is PFT (assuming the reference pulse was free of spatio-temporal
distortions to begin with). This permits the use of a simple Fourier
filtering technique [8] to retrieve the data.

The result is N SEA TADPOLE measurements of the electric field of
the unknown pulse, each delayed in time by an amount proportional
to the PFT, η (the time delay of the pulse front per unit transverse
distance across the beam). Provided that the range of delays
generated—the product of the PFT and the size of the camera at the
output of the imaging spectrometer, Δxc—is greater than or equal to
the temporal length of the unknown pulse, τunk, or η ∙Δxc≥τunk, then
the full temporal electric field of the unknown pulse can be

Fig. 1. Experimental setup for single-shot MUD TADPOLE. The pulse front of the
spatially uniform reference pulse is tilted along the horizontal dimension by a grating.
The imaging lens images the plane of the grating onto the detector of the imaging
spectrometer, ensuring that spatial dispersion is absent and the main spatio-temporal
coupling in the reference pulse is PFT. The unknown pulse is incident on the imaging
spectrometer at a slight angle, θ, with respect to the reference pulse. This crossing of the
two pulses results in a spatial interferogram with spatial fringes along the xc dimension
at the camera at the output of the imaging spectrometer.
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reconstructed by temporally interleaving the N linearly delayed
measurements.

Using PFT to increase the delay range to measure pulses has been
well-documented in the literature [26,27]. Additionally, we recently
used a crossed-beam SI method to measure the spatio-temporal field
of a pulse with a PFT angle of ~89.9° and a delay range of several ns
[28]. To our knowledge, however, there has been no use of PFT to
temporally interleave measurements.

3. Single-shot MUD TADPOLE theory

The single-shot MUD TADPOLE retrieval algorithm consists of
three steps, a spatial Fourier-filtering step, a temporal Fourier filtering
step, and temporal concatenation. Although the single-shot MUD
TADPOLE retrieval algorithm is very similar to that of multi-shot MUD
TADPOLE [8] there are a few differences, and for that reason, we give a
detailed explanation.

3.1. Step 1: Spatial Fourier filter

Single-shot MUD TADPOLE uses crossed-beam SI to generate the
signal trace. In crossed-beam SI the electric field of the unknown pulse
is retrieved from a spectrally resolved spatial interferogram resulting
from the crossing of two beams. The interferogram is given by the
following equation

S ω; xcð Þ = jEu ω; xcð Þ + Er ω; xcð Þ j2; ð1Þ

where Eu(ω,xc) and Er(ω,xc) are the electric fields of the unknown and
reference pulse, respectively, and xc is the spatial coordinate along the
crossing dimension. The unknown beam is spatially uniform over the
camera detector, and the electric field of the unknown pulse can be
written in the form

Eu ω; xcð Þ = Au ω−ω0ð ÞEux xcð Þei φu ω−ω0ð Þð Þ
; ð2Þ

where Au(ω−ω0) and φu(ω−ω0) are the amplitude and phase of the
unknown pulse, ω0 is the center frequency, and Eux

(xc) is the spatial
dependence of the unknown pulse given by

Eux
xcð Þ = ei kxc sinθð Þ

; ð3Þ

where k is the wave-number and θ is the crossing angle of the
unknown beam.

Similarly, we can model the spatio-temporal field of the reference
pulse with PFT. To do so, we start in the (t, xc) domain. In this domain
the electric field of the reference pulse is given by

Er t; xcð Þ = Ert t−ηxcð ÞErx xcð Þ; ð4Þ

where η is the PFT imparted by the grating. In Eq. (4) we have
assumed that, apart from PFT, Er(t, xc) has no additional spatio-
temporal couplings of its coordinates. In other words, the reference
pulse incident upon the diffraction grating must be spatially smooth
with no spatio-temporal distortions. That both the reference and the
unknown pulse must be spatially smooth with no spatial dependence
is an important constraint for this technique, as with all other
techniques that measure only the temporal behavior of the pulse.

Additionally in Eq. (4), the pulse-front tilt is given by η=(sin θd+
sin θi)/c=λ0/(dc) in which θd is the diffracted angle from the grating,
λ0 is the center wavelength, θi is the incident angle on the grating, and
d is the groove spacing of the grating. Taking a Fourier transform of
Eq. (4) with respect to time yields

Er ω; xcð Þ = Erω ω−ω0ð ÞErx xcð Þeiη ω−ω0ð Þxc : ð5Þ

Next, re-writing Eq. (5) in terms of the spectral amplitude and
phase and crossing angle yields:

Er ω; xcð Þ = Ar ω−ω0ð Þei φr ω−ω0ð Þ−kxc sinθ + η ω−ω0ð Þxcð Þ
; ð6Þ

where Ar(ω−ω0) and φr(ω−ω0) are the spectral amplitude and
phase of the reference pulse.

Substituting Eqs. (2) and (6) into Eq. (1) yields the intensity
measured by the imaging spectrometer:

S ω; xcð Þ = jAu ω−ω0ð Þ j2 + jAr ω−ω0ð Þ j2

+ 2Ar ω−ω0ð ÞAu ω−ω0ð Þ cos½iðΔφ ω−ω0ð Þ
+ 2kxcθ + η ω−ω0ð ÞxcÞ�;

ð7Þ

where Δφ(ω−ω0) is the spectral phase difference between the
reference and unknown pulse, c is the speed of light in vacuum, and
we have used the small-angle approximation for the crossing angle, θ.

We use a Fourier retrieval algorithm [8] to filter the signal term
from the interferogram. To do this we first take a spatial Fourier
transform of Eqs. (7) and (8)

S ̃ ω; kxð Þ = jAu ω−ω0ð Þ j2 + jAr ω−ω0ð Þ j2
� �

δ kxð Þ
+ … 2Ar ω−ω0ð ÞAu ω−ω0ð Þe�iΔφ ω−ω0ð Þ

×δ kx � 2
ω
c
θ + η ω−ω0ð Þ

h i� �
:

ð8Þ

Eq. (8) shows that the spatial Fourier transform has three terms. A
DC background is located at kx=0, and the signal term, which
contains both the amplitude and phase of the unknown pulse, is off-
center. The kx-value of the signal term is determined by the crossing
angle, θ, and the PFT, η, of the reference pulse.

In the filtering routine we isolate the signal term and shift it to the
kx=0 value, which is equivalent to adding a constant, −2ω0θ /c,
inside the delta function of the third term in Eq. (8). Therefore, after
filtering and shifting, the retrieved signal term is

Sr̃etrieved ω; kxð Þ = Ar ω−ω0ð ÞAu ω−ω0ð Þe�iΔφ ω−ω0ð Þ

×δ kx � 2
θ
c
+ η

� �
ω−ω0ð Þ

� �� �
:

ð9Þ

This term is then inverse Fourier transformed along the spatial
domain, and the amplitude and phase of the reference pulse are
divided out, yielding

Ψ ω; xcð Þ = Au ω−ω0ð Þei φu ω−ω0ð Þ + 2θc + ηð Þ ω−ω0ð Þxc½ �: ð10Þ

Eq. (10) is the retrieved field spectrogram shown in Fig. 2. By
grouping different variables, we can rewrite Eq. (10) in a clearer
fashion. First, we set

E ω−ω0ð Þ = Au ω−ω0ð Þeiφu ω−ω0ð Þ
: ð11Þ

This term is the electric field of the unknown pulse. Next, we set

τx = 2θ=c + ηð Þxc; ð12Þ

because the PFT maps position to delay. Substituting Eqs. (11) and
(12) into Eq. (10) yields

Ψ ω; τxð Þ = E ω−ω0ð Þei ω−ω0ð Þτx : ð13Þ
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Taking a 1-D Fourier transform of Eq. (13) along the spectral
dimension yields

Ψ̃ t; τxð Þ = E ̃ t + τxð Þeiω0t : ð14Þ

Eqs. (13) and (14) show that each row of the field spectrogram is
the retrieved electric field, Ψ(ω,τx), at a different delay, τx.
Additionally Eq. (12) shows that τx varies linearly along the filtered
spatial dimension of the imaging spectrometer. Therefore, a simple
test pulse can be used to calibrate the delay axis, τx. For example, the
experiments described in this paper used a double pulse of a known
temporal separation for calibrating the delay axis.

3.2. Step 2: Temporal Fourier filter

Since Eq. (14) shows that the use of a reference pulse with PFT
provides both (1) a range of delays and (2) linearly maps delay to
position on the imaging spectrometer, we can reconstruct the entire
unknown pulse in time by temporally interleaving the linearly
delayed measurements in a similar fashion to the multi-shot MUD
TADPOLE technique [8].

But before temporally interleaving, each delayed measurement
must be temporally filtered because each section of the reference
pulse only measures a small temporal range of the unknown pulse.

Temporal filtering is performed because each spatial section of the
reference pulse interferes with a different temporal section of the
unknown pulse of length τsp (see Fig. 3), which is smaller than the
temporal length of the retrieved pulse, and only information within
this region is kept, while that from larger and smaller times is
discarded (see step 2 temporal filter in Fig. 2). The length of τsp is
limited because each spectral measurement made by the detector
only involves a temporal piece of the unknown pulse with a length up
to the reciprocal of the spectral resolution of the spectrometer (the
length of the reference pulse at the output of the spectrometer).

In this step, the spectrogram is first Fourier transformed along the
spectral dimension to the time domain i.e.:

Ψ ω;τxð Þ⇒Ψ̃ t; τxð Þ: ð15Þ

Next, we crop each field such that:

Ψ̃ t; τxð Þ = Ψ̃ t; τxð Þ for τx−
τsp
2

bt bτx +
τsp
2

0 otherwise
:

8<
: ð16Þ

After temporally filtering, each retrieved electric field is shifted in
time because each measurement is time averaged over the frame rate
of the detector. In other words, the field retrieved at the delay τx on

Fig. 2. The single-shot MUD TADPOLE retrieval algorithm of a chirped pulse. In Step 1, the MUD TADPOLE trace is spatially Fourier filtered. First the interferogram is spatially Fourier
transformed along the xc-axis. Then the signal term is filtered and shifted in kx-space and inverse Fourier transformed back to the spatial domain. The amplitude and phase of the
reference pulse are divided out of each row of the filtered image resulting in the field spectrogram (whose squaredmagnitude is the standard spectrogram). Each row of the complex
spectrogram corresponds to the electric field of the unknown pulse at a different delay, Ψ(λ,τx). In Step 2, the retrieved fields are temporally filtered, keeping only the region in
which the unknown and reference pulses are temporally overlapped. Each retrieved field,Ψ(λ,τx), is Fourier transformed to the time domain and temporally shifted to the lab frame
yielding Ψ̃lab t−τxð Þ. In the figure, each color represents the retrieved field at a different delay. Although only the amplitudes are shown, the same process also yields the retrieved
phases. In Step 3, the retrieved amplitude and phase are separately concatenated using a weighted average, resulting in the retrieved temporal profile of the entire unknown pulse.
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the detector, Ψ̃ t; τxð Þ, is centered around t=0, the local zero time
value of that measurement.

In order to concatenate the individual measurements, the
retrieved fields must be transformed from the local time frame of
each τx to the lab frame in which all of the spectral measurements
occur at different times. This means that the retrieved field, Ψ̃ t; τxð Þ, is
linearly shifted by τx,

Ψ̃ t; τxð Þ⇒Ψ̃lab t−τxð Þ: ð17Þ

3.3. Step 3: Concatenation

After temporally filtering and shifting the retrieved fields to the lab
frame, we can retrieve the full electric field of the unknown pulse by
temporal interleaving or concatenating the sampled electric fields. To
do this we use the concatenation and weighted averaging routine
from Step 3 of the MUD TADPOLE retrieval algorithm detailed in [8].

In practice, we find it preferable to actually use delays, τref, smaller
than the length of the spectrometer-broadened reference pulse, τsp, in
order to avoid using the weak leading and trailing regions of the
product of the reference pulse and the retrieved temporal piece of the
pulse.

Therefore a given section of the unknown pulse, Ψ̃ t; τxð Þ, is reliably
retrieved by more than one reference pulse. We average together this
redundant information to obtain a less noisy retrieved pulse. But due
to the spectrometer's finite resolution, the accuracy of an individual
measurement decreases for times further away from the reference
pulse's temporal origin. The purpose of the weighting function is to
account for this. Therefore, we choose the weighting function to be
Gaussian (rather than square) so that it more heavily weighs
information that originates from the temporal center of each
measurement. Additionally, keeping the weighting function's width
less than τsp, assures that no information from delays greater than τsp,
is included in the average because this information is outside the
spectrometer's temporal window and therefore not accurate. This
process reduces the noise in the retrieved pulse and helps to avoid
discontinuities when concatenating the independent measurements
together.

Fig. 2 graphically represents the single-shot MUD TADPOLE
retrieval algorithm.

4. Limitations on pulse-front-tilt, temporal range, and TBP

Although single-shot MUD TADPOLE has the unique property that
it is not limited by the spectral resolution of the spectrometer, its
spectral resolution cannot be increased without limit. Increasing the
spectral resolution requires increasing the PFT of the reference pulse.
Since PFT is a spatio-temporal coupling, a larger value will result in
finer spatial fringes in the spatial interferogram. Finer spatial fringes
will have a reduced contrast due to the limited spatial resolution of
the imaging spectrometer. Therefore, both the crossing angle and the
PFT that occur in the parameter τx in Eq. (12) must be chosen small
enough so that the spatial resolution does not wash the fringes out
entirely, and large enough so that the signal term can be extracted
from the Fourier transform of the interferogram.

In this section we detail the limitations of single-shot MUD
TADPOLE. First, we discuss how the PFT must be matched to the
spectral and spatial resolution of the imaging spectrometer. Next, we
derive the maximum PFT that can be used for single-shot MUD
TADPOLE. Lastly, we derive the maximum TBP measurable.

4.1. Matching PFT to the spectral resolution of the spectrometer

The amount of PFT that can be used is determined by the limited
spectral resolution of the imaging spectrometer. In single-shot MUD
TADPOLE, an imaging spectrometer will make Nmeasurements of the
unknown pulse at N different delays. Fig. 3 illustrates the interference
of the unknown pulse and the tilted reference pulse at the output of
the imaging spectrometer.

Due to the spectrometer's finite spectral resolution, it measures a
section of the unknown pulse up to the inverse of its spectral resolution,
τsp=1/δω. On the other hand, the temporal length of the reference
pulse at a given delay is, τref. Therefore, to ensure an accurate
measurement of each section of the unknown pulse, the condition
τrefbτspmust be satisfied. If this condition is notmet (because the PFT of
the reference pulse is too large (τrefNτsp)) each spectral measurement
will lack the appropriate spectral resolution to resolve those features of
the unknown which are finer than the spectral resolution.

4.2. Matching the PFT to the spatial resolution of the imaging spectrometer

Not only must the PFT be matched to the spectral resolution, it
must also be matched to the spatial resolution of the imaging

Fig. 3. The gating of the unknown pulse with the tilted reference pulse at the output of the spectrometer before and after spatial filtering. The spatial distribution of the unknown
pulse is uniform over the entire detector, whereas the reference pulse exhibits PFT. The single-shot MUD TADPOLE trace, S(ω,xc) is spatially filtered, yielding the field spectrogram,
Ψ(ω,τx). The spatial filtering effectively reduces the number of delayed spectral measurements. Additionally, due to the finite spectral resolution of the imaging spectrometer, each
spectral measurement made by the detector measures only a section of the unknown pulse equal to the inverse of its spectral resolution, τsp=1/δω.
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spectrometer. In order to extract the signal term from the Fourier
transform of the interferogram, it must be separated from the DC
background in kx-space. Eq. (7) shows the equation for the Fourier
transform of the interferogram. The third term contains the signal and
is therefore the term of interest. This term is a line in kx-space (see
Fig. 4) that is governed by the equation

kx ωð Þ = 2
ω
c
θ + η ω−ω0ð Þ: ð18Þ

To avoid aliasing and to properly filter the signal term from the
DC term, the condition kxN0 must be satisfied. Using this constraint
and the fact that the above equation is smallest when ω=ωmin, we
can solve for the maximum value of the PFT for a given crossing
angle.

0 b 2
ωmin

c
θ + η ωmin−ω0ð Þ: ð19Þ

Using the relation ωmin=ω0−Δω /2 and rearranging Eq. (19) to
solve for the PFT

η b
4θ ω0−Δω = 2ð Þ

Δωc
: ð20Þ

For the maximum PFT, the inequality in Eqs. (20) and (21)
becomes an equality.

To allow for the maximum value of PFT, the center of the signal
distribution given by Eq. (20)will be located in the center of the upper
half of the Fourier transformed image shown in Fig. 4 or

k0 =
π

2δxc
; ð21Þ

where, δxc is the pixel width. Using Eqs. (18) and (21) we can solve for
the crossing angle of the center frequency

θ0 =
cπ

4δxω0
: ð22Þ

Using λ0=800 nm and a pixel width of 3.5 μm, δx=3.5 μm,
Eq. (22) yields a crossing angle of ~1°.

Using Eqs. (20) and (22), we can solve for themaximumamount of
PFT that can be used to measure a pulse with single-shot MUD
TADPOLE.

η max =
π

δxcω0

ω0

Δω
−1

2

� �
: ð23Þ

A spectral range of ~20 nm, a center wavelength of ~800 nm, and a
pixel size of 3.5 μm, yield a value for the maximum possible PFT:
ηmax=0.015 fs/nm.

The temporal range is given by the product of the PFT and the
spatial extent of the imaging spectrometer

Δt = η·Δxc = η·Nx ·δxc: ð24Þ

where Nx is the number of points along the spatial dimension of the
imaging spectrometer.

Using Eqs. (23) and (24) the maximum temporal range can be
calculated

Δt =
πNx

ω0

ω0

Δω
−1

2

� �
: ð25Þ

For the experimental parameters used in this paper, a spectral
range of ~20 nm, center wavelength of ~800 nm, a pixel size of 3.5 μm,
and a camera with 3000 pixels in the spatial dimension yield a
maximum temporal range of Δt=158 ps.

4.3. TBP limitations

Now that we have found the maximum PFT, we can solve for the
maximum TBP measurable by single-shot MUD TADPOLE. Using
Eq. (25) the maximum TBP is

TBP = ΔtΔf =
Nxπ
2

1− Δω
2ω0

� �
: ð26Þ

Using the experimental parameters used in this paper, the
maximum TBP is ~4500. It is worth noting that the maximum TBP
that MUD TADPOLE can measure is proportional to the number of
pixels along the spatial dimension. Therefore, if we were to use a
custom, rectangular 6-megapixel detector array (30,000×200), and
keep the spectral range constant, then the maximum TBP would be
45,000, which corresponds to a 20 nm pulse centered at 800 nm that
has been stretched to ~5 ns in length.

5. Experimental setup

We performed experiments using a Coherent MIRA Ti:Sapphire
oscillator. The pulses were centered at 809 nm, with a FWHM
bandwidth of 7.9 nm (3.7 THz), at a repetition rate of 76 MHz, and
had pulse energies of ~5.2 nJ per pulse. Using a Swamp Optics
GRENOUILLE 8-50USB [9], the input pulse was measured to have a
temporal width of 130 fs (see Fig. 5).

A simplified version of the single-shot MUD TADPOLE experimen-
tal set-up is illustrated in Fig. 1. The reference pulse is incident upon a
10.5 cm×10.5 cm 1200 grooves/mm grating at near grazing inci-
dence, ~89° with respect to the grating normal. The near-grazing
incidence caused the reference beam to fill the entire 10.5 cm grating,
which maximized the amount of PFT induced along the horizontal
dimension.

The pulse at the surface of the grating was imaged by a two-lens
imaging system that also de-magnified the beam by a factor 2.5. The
reason for de-magnifying the beam was to increase the PFT of the
reference pulse, thereby increasing the range of delay by a factor equal
to the de-magnification, 2.5. The two-lens imaging system imaged the
plane of the grating onto the detector of the imaging spectrometer,
which ensured that the main spatio-temporal coupling in the
reference pulse was PFT and that spatial chirp was absent.

A periscope was used to rotate the reference pulse out of the plane
such that the PFT occurred in the vertical dimension. This was done
because the imaging spectrometer spectrally resolved the beam along
the horizontal dimension.

Fig. 4. The interferogram and the spatial Fourier transform of the interferogram. The
green rectangle highlights the linear slope of the signal in kx-space, and the equation
governing the line is given by Eq. (17). Here k0 is the center of the signal distribution in
kx-space.
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The imaging spectrometer consisted of a 600 groove/mm grating
and a 100 cm focal length cylindrical lens. A CMOS detector with
3000×2208 pixels collected the image. The imaging spectrometer
used in this setup had a spectral resolution of δλ=0.04 nm/pixel. We
measured the temporal response function (see Fig. 6(a)) of the
spectrometer by measuring the spectral fringe contrast due to two
temporally overlapped pulses at varying delays [8,14].

Due to the relatively slow shutter speed of our camera (~ms), and
the relatively high repetition rate of our laser, 76 MHz, we could not
make a true single-shot measurement. Instead all measurements
described in this paper reflect instead single-frame measurements, or
measurements made using one camera frame, rather than one laser

pulse. Regardless, the technique described in the paper could easily be
performed on a single shot if a fast enough camera is available or a low
enough repetition rate pulse train were used.

The FWHM of the temporal response function was experimentally
determined to be τsp=4 ps.

Additionally, the temporal resolution of single-shotMUD TADPOLE
is determined from the spectral range, which in this experiment was
17 nm, resulting in a temporal resolution of 130 fs.

Finally, to ensure that the unknown pulse was spatially uniform
over the spatial range of the imaging spectrometer, a short 35 cm fiber
was used as the input of the unknown pulse. A 150 mm focal length
lens located a focal length away from the output of the fiber was used
to collimate the output incident upon the imaging spectrometer.

6. Results and discussion

We performed two experiments to demonstrate single-shot MUD
TADPOLE's large temporal range/high spectral resolution. These
experiments demonstrate how single-shot MUD TADPOLE dramati-
cally improves the spectral resolution of the imaging spectrometer. In
both experiments single-shot MUD TADPOLE provides the necessary
spectral resolution to completely characterize the intensity and phase
of the unknown pulse.

Fig. 7 shows the single-shotMUD TADPOLEmeasurement of a train
of four pulses separated by ~7 ps. The train of pulses was generated
using an etalon composed of two partially reflecting mirrors with a
reflectivity of 90%.

Fig. 7(a) shows the single-shot MUD TADPOLE trace. The spatial
fringes (the signal term) generated from the interference between the
unknown and the reference pulses are almost entirely washed out.
This is because, on each row of the detector, the reference pulse only
makes spatial fringes with the temporal piece of the unknown pulse
with which it temporally overlaps. The rest of the unknown pulse also
inevitably impinges on the camera (see Fig. 3), yielding a spatially
structureless background of no value to that particular measurement
and which must therefore be filtered out. This background is filtered
out by performing a spatial Fourier transform (see Fig. 7(b)). The
image of the Fourier transform of the trace clearly shows the signal
term.

After the signal term is filtered and shifted in kx-space, it is inverse
Fourier transformed back to the spatial domain, and the amplitude of
the reference pulse is divided out.

Additionally, the spectral phase of the reference pulse is subtracted
out, resulting in the spectral phase of the unknown pulse, as described
in Section 3.1, Eqs. (9) and (10). Since the reference pulse was derived
directly from the input pulse, their spectral phase and amplitude were
identical with the exception of the linear pulse-front-tilt term of the
reference pulse displayed in Eq. (6). However, since only spectral

Fig. 6. a. The temporal response function, h(t), of the imaging spectrometer used in the
experiments in this paper. We measured the response function (dots) using a Michelson
interferometer, which generated a double pulse with variable pulse separation. The solid
curve is a fit to the data. b. The Fourier transform of h(t), which is the spectral response
function, H(ω). Note that we only measured h(t) on one side of the time axis because we
expect it to be a symmetric function becauseH(ω) is a real function. Themeasured FWHM
of the temporal response function, τsp, was 4 ps. Therefore, the imaging spectrometer can
only accuratelymeasure the spectrumof pulseswith lengths b4 ps, or equivalently, pulses
with spectral features δωN0.0014 rads/fs.

Fig. 5. The temporal and spectral profiles of the input pulse used in the experiments. The FHWMbandwidth of the input pulse was 7.9 nm and the FWHM temporal width was 130 fs.
The measured input pulse was close to transform limited as evidenced by the slight quadratic spectral phase displayed in the spectral plot.
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phase terms 2nd order and higher are relevant to the characterization
of a pulse, subtracting off the measured spectral phase of the input
pulse (see Fig. 5) completely determined the spectral phase of the
unknown pulse.

The field spectrogram is shown in Fig. 7(c). Here we have
transformed the spatial dimension to delay, because the PFT of the
reference pulse linearly maps position to delay on the camera. The
calibration of the delay axis was determined using a double pulse of a
known temporal spacing.

Next, the spectrogram is Fourier transformed along the spectral
dimension to the “time” domain, and temporally filtered keeping only
the region in which the unknown and the section of the reference
pulse that temporally overlap. Fig. 7(d) shows how the delayed
sections of the unknown pulse are then concatenated in time. Using
theweighted averaging scheme described in [8], the delayed retrieved
sections of the pulse are averaged together, resulting in the full
temporal profile of the unknown pulse (see Fig. 7(e)).

Fig. 7(e) shows that the pulse train had a length of ~21 ps, which is
~5 times larger than the FWHM of the temporal response function,
τsp, of the spectrometer used (see Fig. 6(a)). Accordingly, the single-
shot MUD TADPOLE technique increased the temporal range/spectral
resolution of the imaging spectrometer by a factor of 5. Therefore, had
we not used the single-shot MUD TADPOLE technique, the imaging
spectrometer would only be capable of accurately measuring one of
the four pulses in the pulse train.

We compared the retrieved spectrum to that of an Ocean Optics
HR 4000 spectrometer shown in Fig. 8. Comparing the MUD TADPOLE
retrieved spectrum to that of a commercial spectrometer is a good
way to test the accuracy of the single-shot MUD TADPOLE technique.

The good agreement between the two independently measured
spectra confirms that the temporal profile measured in Fig. 7(e) is that
of the unknown pulse.

Our next experiment highlighted the high temporal resolution of
MUD TADPOLE. In this experiment we measured a chirped double
pulse at multiple delays.

The double pulse was generated by a Michelson interferometer.
After the Michelson interferometer, we chirped the pulses with a
single-grating pulse compressor [8].

Fig. 9 shows both the measured and simulated temporal intensity
and phase of two linearly chirped pulses at variable delays with

Fig. 7. Single-shot MUD TADPOLE measurement of a 21 ps pulse train. a. The single-shot MUD TADPOLE trace. b. The spatial Fourier transform of the trace. Here the signal term is
filtered in kx-space and inverse Fourier transformed back to the spatial domain. c. The field spectrogram, where we have transformed the spatial axis to the delay axis because of the
PFT of the reference pulse. d. The concatenation step of the MUD TADPOLE retrieval algorithm in which the retrieved sections of the unknown pulse are concatenated in time. Here
each color represents the retrieved temporal intensity at a different delay. e. After performing a weighted average over all the retrieved sections of the unknown pulse's amplitude
and phase, the full temporal electric field of the unknown pulse is retrieved.

Fig. 8. A comparison of the MUD TADPOLE retrieved spectrum and a spectrometer
measured spectrum. The agreement between the two spectra confirms the accuracy of
the MUD TADPOLE measurement shown in Fig. 7.
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respect to one another. Fig. 9 demonstrates a phenomenon known as
chirped pulse beating [29], which occurs because, at each point in
time, the frequency content of each pulse differs by a constant beat
frequency. This beat frequency is proportional to the delay, τ, between
the two pulses.

Fig. 9 simultaneously highlights the high temporal resolution and
the large temporal range of MUD TADPOLE. The temporal resolution of
MUD TADPOLE is determined by the spectral range of the spectrom-
eter used in Fig. 1. In this experiment, our spectrometer had a spectral
range of 17 nm and a temporal resolution of 130 fs. This high temporal
resolution was put to good use in the measurement of the double
pulse with an 11 ps delay shown in Fig. 9(g). The fast temporal
beating, which had a temporal period of 510 fs, is well resolved by
MUD TADPOLE.

In addition to accurately measuring very fine temporal intensity
features, MUD TADPOLE can also measure complicated temporal
phases. This is demonstrated in Fig. 9(e, g, and h), which shows the
development of a phase cusp, which becomes more prevalent as the
delay between the two linearly chirped pulses is increased.

7. Summary and limitations

We have introduced the first single-shot ultrashort pulse mea-
surement technique that temporally interleaves hundreds of mea-
surements for the complete measurement of the electric field of
relatively long pulses (N100 ps) with ~fs temporal resolution. The
experiments described above resulted in an increase in the spectral
resolution of the spectrometer used by a factor of 30 (120 ps/4 ps).
Furthermore, we have used it to measure pulses up to ~80 ps (see
Fig. 9) with TBPs up to 296 (80 ps×3.7 THz).

Although the demonstrated temporal range was ~120 ps, the
temporal range/spectral resolution of single-shot MUD TADPOLE can
be increased by either increasing the pulse front-tilt or using a larger
detector array. The PFT can be increased by using a grating or etalon
with larger PFT or de-magnifying the image of the reference pulse on
the grating by a larger amount.

It must be noted that increasing the PFT (or equivalently the
angular dispersion) to too large a value will make the equation for PFT
nonlinear (see Eqs. (3) and (4)). The result of this is that the
transverse time delay of the reference pulse front will be nonlinear,

and the delay between individual spectral measurements will not be
constant. This effect can be calibrated using a simple test pulse.

Furthermore, there are a number of experimental constraints on
both the reference and unknown pulses. First, apart from the pulse-
front tilt of the reference pulse, both the reference pulse and the
unknown pulse must be both spatially uniform and have no spatio-
temporal distortions. The reason for this is that position is mapped to
delay on the imaging spectrometer and a spatial distortion in either of
the beams will distort the resulting measurement. For this reason, we
recommend using an input fiber or pinhole to spatially filter the
unknown beam before the imaging spectrometer. Additionally, like all
other versions of SI, the reference pulse must be well-characterized
and it must contain all the frequencies of the unknown pulse in order
for interference to occur.

Additionally, the temporal range and hence complexity of pulse
that can be measured cannot be increased without limit due to the
finite spatial resolution of the imaging spectrometer and dynamic
range of the camera.

Finally, the dynamic range of the camera is also limiting factor. For
extremely long pulses, the fringes due to the temporal overlap with
the reference pulse will be obscured by potentially more intense DC
terms due to the rest of the complex unknown pulse that does not
temporally overlap with the reference pulse. In other words, as the
unknown pulse duration increases, the fringe contrast will decrease
because fringes only occur when the pulses temporally overlap, so
most of the intensity will be in this DC background. If, for example, the
unknown pulse has a temporal length of τsp, then only one
measurement is required (and MUD TADPOLE reduces to SEA
TADPOLE), and the ratio between the signal term (spatial fringes)
and the DC term (background) will be 1/2 (assuming the intensities of
the two pulses are equal). If the unknown pulse has a temporal length
of 2τsp, then one extra reference pulse will be required, and one extra
signal term will be added, and the ratio becomes 1/3. If the unknown
pulse has a temporal length of 3τsp, the ratio becomes 1/4, etc.
Therefore, for a MUD TADPOLE setup that measures a pulse with a
length of Nτsp, the ratio of the signal to background will be 1/(N+1).
Thus, a 10 bit camera with 1024 counts could be used to measure a
pulse requiring nomore than 1023 individual measurements, yielding
at most a factor of 1023 improved spectral resolution.

Nevertheless, for a single-shot MUD TADPOLE using a few-
megapixel camera and a low resolution spectrometer with 20 nm

Fig. 9. A comparison of the measured and calculated temporal profiles of a chirped double pulse at variable delays. a,b. The MUD TADPOLE retrieved and simulated temporal profiles
of two 21 ps linearly chirped pulses separated by 0.8 ps. c,d. The retrieved and simulated temporal profiles after increasing the delay between pulses to 2.8 ps. e,f. The retrieved and
simulated temporal profiles after increasing the delay between pulses to 6.8 ps. At this large delay the temporal phase develops a cusp, which MUD TADPOLE is able to retrieve. g,h.
The retrieved and simulated temporal profiles after increasing the delay between pulses to 11.1 ps. i, j. The retrieved and simulated temporal profiles after increasing the delay
between pulses to 45 ps. In this measurement the pulses are separated by a large delay, yet there is still some temporal overlap. This results in very high frequency temporal beating.
In all measurements, the agreement between the expected and measured results is good.
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spectral range, the maximum TBP that can be measured is ~4500.
Therefore, we believe that this simple and inexpensive device can be
used to accurately characterize stretched pulses used in CPA systems
and provide the foundation for the measurement of arbitrary wave-
forms. Furthermore, even if the spectral phase is not desired, it could be
used simply to improve the spectral resolution of any spectrometer.
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