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We recently introduced frequency-resolved optical gating (FROG), a technique for measuring the intensity
and phase of an individual, arbitrary, ultrashort laser pulse. FROG can use almost any instantaneous
optical nonlinearity, with the most common geometries being polarization gate, self-diffraction, and second-
harmonic generation. The experimentally generated FROG trace is intuitive, visually appealing, and can
yield quantitative information about the pulse parameters (such as temporal and spectral width and chirp).
However, the qualitative and the quantitative features of the FROG trace depend strongly on the geometry
used. We compare the FROG traces for several common ultrashort pulses for these three common geometries
and, where possible, develop scaling rules that allow one to obtain quantitative information about the pulse
directly from the experimental FROG trace. We illuminate the important features of the various FROG
traces for transform-limited, linearly chirped, self-phase modulated, and nonlinearly chirped pulses, pulses
with simultaneous linear chirp and self-phase modulation, and pulses with simultaneous linear chirp and
cubic phase distortion, as well as double pulses, pulses with phase jumps, and pulses with complex intensity
and phase substructure.

INTRODUCTION

The measurement of the intensity and phase evolution of
ultrashort pulses is a problem that, for many years, defied
solution. Techniques such as autocorrelation" 2 and in-
terferometric autocorrelation3 4 require a priori assump-
tions about the nature of the pulse, while methods that
do not require such assumptions are complex and cannot
operate on a single shot.5 "9 However, the recently devel-
oped technique of frequency-resolved optical gating'1' 2

(FROG) permits the complete recovery of the pulse inten-
sity and phase evolution without assumptions on a single-
shot basis and with a simple apparatus. This technique
produces an experimental trace (hereafter referred to as
the FROG trace) that is related to the spectrogram'3-1 5 of
the pulse, from which the complete complex electric field
of the pulse can be determined by a simple and robust
iterative algorithm.1' 16

The spectrogram, and hence the FROG trace, is in
general intuitive and visually appealing. Indeed, in
fields where the spectrogram is commonly used (such
as acoustics), such a trace is often preferred to the actual
waveform for display.13-5 Like the FROG trace, the
spectrogram is the short-term spectrum of the pulse and
generally mirrors the graph of the pulse's instantaneous
frequency as a function of time. The use of spectro-
grams in representing optical pulses was pioneered by
Treacy.'7 Other time-frequency representations, such
as the Wigner function, have been suggested for use in
ultrashort-pulse research, 8"9 but measuring such quanti-

ties is significantly more difficult than obtaining a FROG
trace.

The complete FROG trace is directly viewable in
the laboratory on each laser shot as an image on a
two-dimensional camera array. Thus FROG provides
immediate visual feedback on all important pulse charac-
teristics, such as pulse length, chirp, self-phase modula-
tion, and spectral width. Knowledge of the type of trace
obtained for a given pulse would greatly assist in the
alignment of lasers, pulse compressors, and other optical
components, as well as in the understanding of the basic
physics of the lasers themselves.

The nonlinear mechanism required for generating a
FROG trace can result from a variety of processes, the
main requirement being that the effect be instanta-
neous. We have used polarization (Kerr) rotation in
a polarization-gate (PG) beam geometry, self-diffraction
(SD, three-wave mixing), and second-harmonic generation
(SHG). It is possible to use third-harmonic generation,
as well as cascaded x(2) processes, which then appear as
a X(3) process. In this paper we concentrate on the PG,
SD, and SHG geometries because these geometries have
been demonstrated experimentally and are anticipated to
be the most useful.

Interestingly, the different types of FROG show non-
trivial differences in their traces. PG FROG traces are
the most intuitive, and the pulse-retrieval algorithm is
most robust in PG FROG.16 SD FROG traces contain
much more structure than PG FROG traces and are
therefore slightly more difficult to interpret. SHG FROG
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contains a temporal ambiguity1 0 ""12 0
,
2' (a pulse and its

time-reversed replica yield identical SHG FROG traces),
and therefore SHG FROG traces are always symmetric
with respect to delay. As a result one cannot determine
the sign of spectral phase distortions and even-order tem-
poral phase distortions (such as linear chirp).

Our purpose in this paper is to compare the character-
istics of the FROG traces generated by the various FROG
geometries and to present a catalog of theoretical FROG
traces, which will assist experimentalists in determining
pulse characteristics immediately from the visual data of
the FROG trace. We develop scaling rules that allow
one to obtain quantitative information about the pulse
directly from the FROG trace without the use of the pulse-
retrieval algorithm. We also discuss in detail the charac-
teristics of the FROG trace so that, when confronted with
a new or previously unseen trace, the researcher may be
able to interpret it and have a good idea of what the pulse
intensity and phase may be without the use of the itera-
tive algorithm. With the insight provided by this catalog
and discussion, FROG becomes a real-time feedback sys-
tem for essentially all ultrashort-pulse parameters.

We begin with a short discussion of the various FROG
geometries and the experimental issues encountered in
using them and review the experimental FROG setup.
We then introduce the concept of the marginal, a useful
quantity generated from the FROG trace, and mention
some scaling laws that allow us to derive quantitative in-
formation about the pulse directly from the marginals of
the FROG trace. We then explore FROG traces for the
various geometries in detail, beginning with a transform-
limited pulse and followed by traces for pulses with lin-
ear chirp, self-phase modulation (SPM), and cubic spectral
and temporal phase distortion. We discuss some unique
features of FROG for detecting double pulses, showing
that the FROG trace measures the relative phase shift of
two pulses to within a small fraction of a wavelength even
if the pulses are separated by many pulse lengths. We
then present the case (applicable to pulse compression) of
a self-phase modulated pulse undergoing negative group-
velocity dispersion (GVD) as well as a pulse with simul-
taneous linear chirp and spectral cubic phase distortion.
Finally, we show traces for pulses with phase jumps and
for pulses with significant random intensity and phase
substructure.

TYPES OF FREQUENCY-RESOLVED
OPTICAL GATING

The various types of FROG geometry (Fig. 1) are suited
to slightly different experimental regimes. Here we shall
briefly explore some of the experimental concerns.

In PG FROG12 the signal is generated by nonlinear
Kerr polarization rotation of the probe pulse by the gate
pulse. PG FROG is automatically phase matched, which
allows for large crossing angles and hence large delay
ranges in the single-shot geometry, permitting its use for
measuring long pulses. PG FROG does, however, require
propagation through a polarizer before the measurement
and so may not be suitable for extremely short or ultravi-
olet pulses. The limiting source of noise in a PG FROG
experiment is usually leakage of the probe beam through
the crossed polarizers.

SD FROG'0 uses the self-diffracted (also called three-
wave or forward four-wave mixing) signal. SD FROG
is not phase matched and hence requires a relatively
thin nonlinear medium and a small beam-crossing angle.
This limits the maximum length of pulse that can be
measured with SD FROG in a single-shot geometry. SD
FROG therefore appears useful for ultraviolet and ex-
tremely short pulses, as it involves minimal propaga-
tion through optical components. Light scattered off the
sample surface into the signal direction may be the main
noise source for this measurement (although using orthog-
onal polarizations may help in this case).

SHG FROG,101120-2 2 which uses the normal second-
harmonic autocorrelation signal, is limited in its wave-
length range but is useful for low-energy pulses. It is
difficult to generate sufficient signal from a third-order
nonlinearity for pulses with peak intensities of less than
105 W (10 nJ for a 100-fs pulse). Because the signal is
generated at a frequency different than that of the input
light, scattering is not a problem. However, one is lim-
ited in the maximum length of the crystal that one can
use because of group-velocity mismatch.

Other FROG geometries, which have not yet been real-
ized experimentally, are possible. Third-harmonic gen-
eration will be severely limited in its useful wavelength
range but maintains the advantage that scattered light
from the fundamental beam will not interfere with the
(frequency-tripled) signal beam. Cascaded x(2) effects23

can mimic the functional form of self-diffraction of third-
harmonic generation and may have longer effective
nonlinear coefficients X3 than usual third-order non-
linearities. They do, however, suffer from a more com-
plicated alignment procedure.

FREQUENCY-RESOLVED-OPTICAL-GATING
TRACE

For the single-shot version of FROG, two replicas (which
we call the gate and the probe pulses) of the pulse to be
measured are focused with a cylindrical lens and crossed

Polarization Gate

E,g (t,) =E(t) W(t- _ )2

Third-Harmonic Generation

Eig(t) =E2(t)E(t- c)

Parametric Downconversion

Q A
on

Self-Diffraction

Esig (t ) =E2(t)E (t - )

Second-Harmonic Generation

Es(tt) =E(t)E(t - )

Parametric Upconversion

.,ig (tat ) =E (t)E (t - ) E.,i, (to ) =E2(t)E(t - )
Fig. 1. Schematic of the various experimental geometries for
generating FROG traces. The nonlinear mixing signal is spec-
trally resolved as a function of delay time between the two
replicas of the beam to be measured. The parametric conversion
geometries use two crystals with a second-order nonlinearity,
cascaded to produce an effective third-order nonlinearity.

DeLong et al.



Vol. 11, No. 9/September 1994/J. Opt. Soc. Am. B 1597

in a nonlinear-optical medium (see Fig. 1) in the man-
ner of a single-shot autocorrelator. In this fashion rela-
tive delay is varied spatially across the medium. In PG
FROG the probe, or test, pulse passes through crossed
polarizers that are placed on either side of the nonlin-
ear medium. The gain pulse is polarized at roughly a
450 angle to the probe pulse, typically by out-of-plane
propagation. The optical Kerr polarization-rotation
effect' 2 produces a signal field

EsigpG(t, ) = E(t)IE(t - 7)1 2 , (1)

in which the first factor, E(t), is due to the probe field and
the second factor, IE(t - r)12, is due to the gate field. In
SD FROG, which is not phase matched, the apparatus is
similar, but we use the self-diffracted signal, which has
the form

EsigSD(t, r) E 2 (t)E*(t - 7) (2)

In SHG FROG the frequency-doubled light of the autocor-
relation forms the signal beam, so that

EsigSHG(t, T) = E(t)E(t - ). (3)

The signal beam is imaged .onto the entrance slit of
an imaging spectrometer by a spherical lens, where the
relative time delay r between the probe and the gate
pulses is parameterized along the slit. The spectrometer
disperses the light in a direction perpendicular to the slit,
resulting in a two-dimensional image with delay time 
and frequency &) as the axes. The CCD array detects the
intensity, so that the FROG trace has the mathematical
form

2

IFROG(WO, T) = J dtEsig(t, r)exp(iwt) . (4)

The FROG trace is formally equivalent to the spectro-
gram' 3 -'5 Sg[w, T; E(t)] of E(t),

2

Sg[W, 'r; E(t)] = dE(t)g(t - T)exp(iw t) , (5)

where g(t) is a gate function. The gate in a usual spec-
trogram is typically an independent, simple, and known
function, such as a rectangular function or a Gaussian.
In FROG, on the other hand, to avoid the need for an in-
dependent reference pulse, the pulse itself provides the
gate. It is this use of the pulse to gate itself that gives
FROG its dynamic range and power. For example, for
best results the gate should have a width somewhat, but
not too much, shorter than the pulse. This is guaranteed
in FROG because the gate is some simple function of the
pulse. In addition, an ambiguity is known to exist in the
spectrogram (the relative phase of well-separated pulses);
but because FROG's gate is always approximately as long
as the pulse, this ambiguity does not occur in FROG.'0 "
Thus in some ways FROG is superior to the standard
spectrogram.

In PG FROG the gate is a strictly real function-the
intensity envelope of the pulse. This leads to FROG
traces that are intuitive and visually appealing. In SD

FROG the gate is a potentially complex function and thus
introduces extra phase (frequency) information into the
FROG trace. Thus SD FROG traces, in general, will be
more complicated and contain more detail than PG FROG
traces. In SHG FROG the gate is simply a replica of the
pulse, a fact that introduces a temporal ambiguity into
the SHG FROG problem.21

A simple visual inspection of the FROG trace provides
extensive information about the pulse. The horizontal
and the vertical extents of the FROG trace give the tempo-
ral and the spectral widths to within an order of unity cor-
rection. These notions can be made quantitative through
the use of the marginal, which we now discuss.

MARGINALS
Many useful properties of the spectrogram, and hence of
the FROG trace, are summarized in the excellent paper by
Altes.' 5 Probably the most useful for interpreting FROG
traces are those relating to the marginals, and we sum-
marize those properties here. The delay marginal is the
integral of the FROG trace along the frequency axis:

M7 (r) f dWIFROG(W, T), (6)

yielding a function of delay only. For PG and SD FROG
the delay marginal has the form

Ml PG(,) = M SD(-) f dtI(t) 2(t-T). (7)

In other words, integrating the FROG trace along the fre-
quency axis yields the third-order intensity autocorrela-
tion. In SHG FROG the delay marginal has the form

MSHG(,) = f dtI(t)I(t - (8)

which is the standard second-order intensity autocorrela-
tion of the pulse.

We also define the frequency marginal, which is the
integral of the FROG trace along the delay axis and hence
a function of frequency only:

M.(0w) f drIFRoG(W, T). (9)

The form of the frequency marginal is also dependent on
the nonlinearity used in creating the FROG trace. For
PG FROG it is related to the pulse spectrum and second-
order intensity autocorrelation, A(2)(t), of the pulse:

MPG(.) = I(w) * F{A12 (T)}, (10)

where F{} indicates the Fourier transform and * indicates
convolution. In the case of SD FROG the frequency mar-
ginal has the form

M. SD(Cw) = I(-w) * F{E 2(t) ® [E*(t)]2}, (11)

where ® denotes cross correlation and the superscript as-
terisk indicates complex conjugation. Equation (11) can
be rewritten as

M.SD(W) = I(-W) * ISH(W),
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where I(z) is the spectrum of the pulse and ISH(Co) is the
spectrum of the second harmonic, E2 (t), of the pulse. For
SHG FROG the frequency marginal has the simple form

M,,,SHG(o)) = 21(w) * I(co). (13)

The mean frequency of the FROG trace at a given
delay time is often simply related to the instantaneous
frequency of the pulse at time t,

1 d(t) (14)fAt) = - (14)d

where 0(t) is the phase of the electric field as a function
of time. To quantify this notion, we calculate the first
moment of the FROG trace taken at each delay value,

dIFR0G(0J, T)
f-() = ~X0 (15)

_ I1 L dOIFRoG(O) 15)

We call this quantity the first-order delay marginal
(FODM). In the next section we develop some scaling
laws that allow us to relate the FODM to f (t).

SCALING RULES FOR THE
INSTANTANEOUS FREQUENCY

The FROG trace usually provides a good approximation
to the instantaneous frequency as a function of time, f (t).
This is what gives the FROG technique its visual appeal:
one can generally see the manner in which the instanta-
neous frequency changes during the pulse directly from
the FROG trace.

It would be useful if we could obtain quantitative re-
sults, such as the amount of linear chirp in a pulse, from
a simple visual inspection of its FROG trace. However,
the FROG trace does not directly reveal the instantaneous
frequency as a function of time. Instead f (t) is scaled or
distorted in some usually predictable way. Here we de-
rive some simple relations that allow us to construct scal-
ing laws to relate the information available in the FROG
trace to f(t).

The information available in the FROG trace is sum-
marized by the FODM of Eq. (15). (The FODM gives us
the slope or curvature of the FROG trace when these con-
cepts are appropriate.) The FODM, being the mean fre-
quency of the FROG trace at delay time T, should be equal
to the center frequency of the signal field, flsig(r), at the
same delay time . We can compute flig(T) analytically
and then use a Taylor series expansion to reveal how the
various orders of frequency distortion are scaled in the
FROG trace.

In PG FROG, with Gaussian pulses, the signal field
Egig(t, r) is centered at the time'2 2/3 (the signal field
will be centered at slightly different times for different
pulse shapes). In PG FROG the gate is a strictly real
function and does not introduce any phase into the signal
beam. Therefore the frequency of the signal field when
the time delay is can be written as

flsig (r) = W(2 far). (16)

Expanding this equation in a Taylor series would indicate
that the nth-order frequency distortion is scaled in the
FROG trace by a factor of (2/3)n.

For SD FROG the relation is more complex. Because
the signal pulse is centered at approximately the time r/3
and the expression for the signal frequency in SD FROG
is f sigSD = 2 p - cog, the instantaneous frequency of
the signal pulse will be flgsgSD(r) 2w(r/3) - co(-2r/3).
Expanding w(T) in a Taylor series, we obtain' 0

flsig SD(r) = I [ (2) w(v)(0)Tn (17)

the first few terms of which are

flsigSD (r) = w(0) + 4 M(0)(r
( 2 (

2
)(0) 2

\9J 2

+ (10) (3 ) 3
(18)

where .(n)(0) is the nth derivative of co(t) evaluated at
t = 0. The coefficient in the square brackets in Eq. (17)
[those in parentheses in Eq. (18)] multiplies the usual
Taylor-series terms for (t). When this coefficient is
larger than one, the effect of that particular order of phase
distortion will be amplified in the SD FROG trace. The
coefficients for even orders of frequency distortion (odd or-
ders of phase distortion) are negative. This means that
the apparent sign of the phase distortion is reversed in the
FROG trace. We give an example of this in the section
below on Temporal Cubic Phase.

Similarly, for SHG FROG we see that fi sigSHG(T) -

,o(T/2) + (-r/2), and we can expand this in a Taylor
series to get

fiSHG( a(n)()n [(1 )fwsigh (T) = ew terms
n=O n 

which has as the first few terms

+(-2)1 ' (19)

flsig (r) = 2w(0) + ( 2 )(2 T2

W4)(0) 4
+ i 24 (20)

We see that in SHG FROG the odd-order frequency distor-
tions (even-order phase distortions) such as linear chirp
are not apparent in the FROG trace at all. This does not
mean that SHG FROG is insensitive to these phase distor-
tions. For example, in the case of linear chirp the SHG
FROG trace becomes wider in frequency as the amount
of chirp increases, but it does not acquire slope (as in
the PG and SD cases), and therefore positive and neg-
ative chirp are indistinguishable. Also, for higher-order
phase distortions the value of the Taylor series coefficient
decreases, reducing the visibility in the SHG FROG trace.

We can use the relations developed above to estimate
the quantitative amount of phase distortion from a simple
visual inspection of the FROG trace. By measuring the
FODM of the FROG trace [and therefore flsig(r)] we can
use the scaling coefficients to deduce the true amount
of phase distortion in the pulse. In general this sort of
estimation appears to work well as long as only one type
of phase distortion is present in the pulse. In general,
however, if quantitative results are needed, the safest
route is to entrust the recovery of such values to the pulse-
retrieval algorithm. This will be discussed in more detail
for the various pulses below.
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PG, SD: Transform Limit
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Fig. 2. FROG traces for a Gaussian-shaped transform-limited pulse. The FROG trace for all three geometries are ellipses for this
pulse. (a) The PG and the SD FROG traces are identical for this case. (b) The SHG FROG trace is wider in frequency but narrower
in delay than the PG and the SD FROG traces. The frequency axis is labeled in linear, not angular, frequency units.

PG: Linear Chirp
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Fig. 3. (a)-(c) FROG traces for a linearly chirped pulse. The linear chirp parameter was chosen to broaden the spectrum by a
factor of 3 over the unchirped spectral width. The PG and the SD FROG traces are tilted ellipses, whereas the SHG FROG trace
is untilted. The nearly circular form of the SHG FROG trace in this case is an accident of the pulse parameters and scaling of the
figure; the trace is, in general, elliptical. (d) Instantaneous frequency as a function of time, f (t), and the FODM's for PG and SD
FROG (in SHG FROG the FODM is flat). The FODM essentially measures the slope of the FROG trace. The slope of the SD FROG
trace is twice that of the PG FROG trace for a linearly chirped pulse.

TRANSFORM-LIMITED PULSE

As a first example we examine the transform-limited
Gaussian pulse (the optical carrier frequency has been
removed from all electric fields in this paper),

E(t) = exp(-at2 ), (21)

which has a FWHM in intensity of

[2 ln(2)] (22)

and a spectral width of

fFWHM = 2 ln(2)
7rrFW

(23)

The various FROG traces for this pulse are displayed
in Fig. 2 (the PG and SD FROG traces are identical for
the transform-limited pulse). They appear as an ellipse
centered at the origin with major and minor axes along
the r = 0 and f = 0 axes. The temporal FWHM of the PG
and SD FROG traces at f = 0 is 1.22 times wider than the

DeLong et al.

I . . . . I . . . ..

2

1

0

-1

-2

0-

aM

r

4)

4)

0.

CL

4)

0r
4)
U.

. .- , . . , --T- -. , (

> ~~~~~~~~~~(c)2

I

0

-1

-2

2

1

0

-1

-2

4-

IL

0)
C
4)

4)
to

a.)

CL

01
4)

C
4)
4)
U)

0

C

4)
0~

a)

LL



1600 J. Opt. Soc. Am. B/Vol. 11, No. 9/September 1994

FWHM of the original pulse, and the spectral FWHM at
r = 0 is 1.73 times wider than the spectral FWHM of the
original pulse. In SHG FROG both widths are vX2 times
wider.2 4 (Note that although the analytical expression
for the FROG trace uses the angular frequency, all FROG
traces in this paper use the linear frequency f.)

LINEARLY CHIRPED PULSE

We write the electric-field envelope of a linearly chirped
pulse as

E(t) = exp[(-a + ib)t2]. (24)

This pulse has a spectral bandwidth that is increased over
the transform limit2 5 by [1 + (b/a)2 ]12. Figure 3 shows
the FROG traces of a positively chirped pulse, where
the chirp parameter b was chosen to triple the spectral
bandwidth of the unchirped (b = 0) pulse. Note that in
such a positively chirped pulse the leading edge of the
pulse (negative times) has a lower frequency than the
trailing edge of the pulse (positive times), as reflected
in the PG and SD FROG traces. Conversely, a pulse
with negative chirp leads to a negative slope in the PG
and the SD FROG traces. In SHG FROG the sign of the
chirp is indeterminate, and the trace exhibits zero slope.
[In Fig. 3(c) the SHG FROG trace appears to be circular.
This is a coincidence of the pulse parameters and the
scaling chosen for the graph. The SHG FROG trace of
a linearly chirped pulse is, in general, an ellipse.] This
illustrates one of the main disadvantages of SHG FROG:
the traces for positive and negative chirp are identical, so
that one cannot learn the sign of the chirp from the SHG
FROG trace.

The PG and the SD FROG traces closely parallel the
f(t) curve, seen in Fig. 3(d). This is because FROG is a
time-domain sampling process, like the temporal method
of Ref. 26, and therefore inherently measures the fre-
quency as a function of time. Of course, the FROG trace
contains full information regarding the pulse in either
domain; it simply looks more like the time-domain rep-
resentation of the pulse than the frequency-domain rep-
resentation of the pulse.

To obtain a quantitative measure of the chirp directly
from the FROG trace, it is necessary to compare the
slope of the FROG trace to the slope of the true instan-
taneous frequency versus time, f (t). To find the slope of
the FROG trace, we use the FODM of Eq. (15). The in-
stantaneous frequency as a function of time is calculated
from Eq. (14).

Figure 3(d) shows f(t) of the pulse and the PG and the
SD FROG FODM's. [the FODM for SHG FROG is flat,
as is predicted by Eq. (20).] In PG FROG the slope of
the FODM is 2/3 that of f(t). This agrees with Eq. (16),
when it is remembered that in linear chirp the instan-
taneous frequency goes linearly with time. The slope of
the FODM in SD FROG is 4/3 that of f (t), as is predicted
by the second term of Eq. (18), and has twice the slope
as in PG FROG. Thus, by measuring the FODM of the
PG or the SD FROG trace, we see that we can accurately
determine the amount of chirp in a linearly chirped pulse.

The SHG FROG trace does not acquire any slope for
a linearly chirped pulse. However, we can still make an

estimate of the amount of chirp by measuring the spectral
width of the SHG FROG trace at X = 0. This width is
v wider than the spectral width of the pulse itself (for
Gaussian pulses). There is a drawback to this method,
however: in SHG FROG a mere visual inspection of the
trace does not reveal whether linear chirp is the dominant
phase distortion, in contrast to the case for PG and SD
FROG.

SELF-PHASE MODULATION

SPM is an intensity-dependent phase that a pulse may
acquire by passing through a Kerr medium such as an
optical fiber.27 The electric field is written as

E(t) = exp[-at2 + iQIE(t)12].

0.

0-
4)

4)c .

CD

U-I

3

2

1

0

I

-2.

-1 .5

Z

0
4)

.)

la0.

CLen

Cr

c

U
U-

Z

0
4)

4)

U)

0.

C.)
Cr
10
4)
U.

PG: SPM, = 3
(a)

-1.0 -0.5 0.0 0.5 1.0
Time Delay (pulse lengths)

SD: SPM, Q = 3
3 . . , . . . . . . . . .

2-

0-1 

-2

-3
-1.5 -1.0 -0.5 0.0 0.5 1.0

Time Delay (pulse lengths)

SHG: SPM, Q = 3

-1.0 -0.5 0.0 0.5 1.0
Time Delay (pulse lengths)

(25)

1.5

.5

1.5

Fig. 4. (a)-(c) FROG traces for a self-phase modulated pulse
with Q = 3. The PG and the SD FROG traces show the char-
acteristic features of SPM, with lower frequencies generated in
the rising edge of the pulse and higher frequencies in the falling
edge of the pulse.

DeLong et al.



Vol. 11, No. 9/September 1994/J. Opt. Soc. Am. B 1601

PG: SPM, Q = 86 ... . .. I...
(a)

4

2 

0 .

-4 

-6 I 

6

4

2

0

-2

-4

-6

-1.0 -0.5 0.0 0.5 1.0
Time Delay (pulse lengths)

SD: SPM. = 8

-1.5 -1.0 -0.5 0.0 0.5 1.0
Time Delay (pulse lengths)

Z-0)
C
4)

0.

CL

4)
0~
4)
U-

1.5

SHG: SPM, Q = 86 . .. .. .
(c)

4 

2 

-2-

-4

-6 - -
-1.5

6-

c) 4-
) -G) 2 -

U)4
0.CL 0 -

0> -2 -
a)

r) -4-
U. 

'< __

1.5

-1.0 -0.5 0.0 0.5 1.0
Time Delay (pulse lengths)

-u I I I I I , I ,'

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Time (pulse lengths)

Fig. 5. (a)-(c) FROG traces for a self-phase modulated pulse with Q = 8. All the traces exhibit considerable structure. (d) f (t) for
the pulse, as well as the FODM for PG and SD FROG traces (the FODM for SHG FROG is flat in this case). Here we see how SD FROG
accentuates the features of SPM. The spectrum, seen in the inset, has three peaks, a fact most clearly reflected in the PG FROG trace (a).

For a positive value of Q, lower frequencies are generated
in the leading edge of the pulse, while higher frequencies
are generated in the trailing edge. In Figs. 4 and 5 we
see two cases of self-phase modulated pulses, the first
with a moderate amount of SPM, Q = 3, and the second
with a larger amount of SPM, Q = 8.

For the Q = 3 case shown in Fig. 4 we see that, while
the PG and the SD FROG traces have taken on the charac-
teristic S shape of SPM, the SHG FROG trace is not nearly
so intuitive. In Fig. 5 the Q = 8 case shows a larger SPM
distortion, and the FROG traces exhibit much more struc-
ture than the Q = 3 case. The detailed structure of the
SD FROG traces includes wisplike fringes. This is be-
cause the gate pulse in SD FROG is a complex function,
rather than real, and thus contributes phase (frequency)
to the signal beam. The spectrum of the pulse, plotted
as the inset in Fig. 5(d), exhibits three peaks for Q = 8.
This is reflected clearly in the PG FROG trace but not so
strongly in the SD or the SHG FROG traces.

Also in Fig. 5(d) we see the f (t) curve for the pulse,
as well as the FODM for PG and SD FROG. Using this
information, we can derive scaling laws for pulses with
SPM. For PG FROG the FODM is elongated in time by
a factor of 1.75 and reduced in magnitude by a factor
of 0.75 compared with the analytically derived f (t). If
Eq. (16) actually held, these factors would be 1.5 and 1,
respectively. In the case of SD FROG we find that the
time axis of the FODM is stretched by a factor of -2.5,
while the frequency axis is stretched by a factor of -2.

The FODM of SHG FROG, being identically zero, allows
no such comparison.

However, once we know these correction factors, we
can estimate the value of Q directly from the PG or the
SD FROG trace of a self-phase-modulated pulse. The
maximum frequency excursion of f(t) for a pulse of the
form of Eq. (25) is fmax = 0.227Q. (All frequencies are
normalized to the inverse pulse width.) When we include
the empirically determined factors mentioned above, we
find that the maximum frequency excursion of the FODM,
fmax, is related to the value of Q through fmaxPG = 0.170Q
for PG FROG and [max SD = 0.455Q for SD FROG.

TEMPORAL CUBIC PHASE

It is also important to be able to characterize higher-
order phase distortions, such as cubic phase, and FROG
does this. As an example, we consider the sample case of
temporal cubic phase in the absence of other distortions,
in which case the electric field is written as

E(t) = exp(-at2 + ict3). (26)

A pulse with this type of chirp was seen experimentally
with FROG28 when a self-phase-modulated pulse was am-
plified by a narrow-band amplifier. The FROG traces of
a pulse with chirp of this form, in which we have used
c = -4/rFw 3 , are plotted in Fig. 6. In this case the pulse
instantaneous frequency has the shape of a parabola, and
we see that the FROG trace also closely follows this shape.
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pulse (inset) shows a beating phenomenon, a fact most clearly reflected in the SHG FROG trace.
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In a pulse such as this one with positive temporal cubic
phase, the leading and the trailing edges of the pulse have
a higher frequency than the center of the pulse. The
frequency spectrum of this pulse also is plotted as the
inset in Fig. 6(d). There is a beating effect at the higher
frequencies because these frequencies are present at two
different times in the pulse, as is suggested by the FROG
trace and the f(t) curve.

Once again we can extract quantitative information
directly from the FROG trace. Figure 6(d) shows the
FODM's of the three FROG traces as well as the f(t)
curve. In PG FROG the curvature of the FODM is found
to be 4/9 that of f(t), in accordance with Eq. (16). In SD
FROG the FODM has a curvature of -2/9 that of f(t),
again in accordance with the third time of Eq. (18). In
SHG FROG the FODM curvature is 1/2 that of f(t), as
the second term of Eq. (20) predicts. Thus, we see that
it is straightforward to read the amount of temporal cubic
phase directly from the FROG trace.

SPECTRAL CUBIC PHASE

Spectral cubic phase distortion is commonly encountered
when one is trying to compress pulses to very short
lengths. 2

93
4 In this case we describe the electric field

in the frequency domain as

E(w) =xp(-- 4a +id3)o (27)

For our example (Fig. 7) we chose d such that d =
TFW3/2.6, where TrFw is related to a through Eq. (22).

The spectral cubic phase has the characteristic that high
and low frequencies acquire more delay than intermedi-
ate frequencies, so that the group delay as a function of
time is parabolic. In the time domain such a pulse has
intermediate frequencies in the leading edge and center
but both high and low frequencies in the trailing edge,
leading to a beating phenomenon, i.e., the familiar satel-
lite pulses in the time domain [as seen in the inset of
Fig. 7(d)].

In Figs. 7(a)-7(c) we see the FROG traces for a pulse
with spectral cubic phase. The PG FROG trace nicely
shows a parabolic feature, with high and low frequencies
exhibiting larger time delays than the intermediate fre-
quencies. The SD FROG trace is similar but reflected
about the delay axis (owing to the complex nature of the
gate). The SHG FROG trace also shows a clear para-
bolic feature, but because the SHG FROG trace is al-
ways symmetric in delay, the parabolic feature extends to
both sides of the trace. Thus, in SHG FROG, one cannot
tell the sign of spectral cubic phase, which is yet another
manifestation of the temporal ambiguity.

In Fig. 7(d) we plot the group delay as a function of
time, t(f), defined analogously to Eq. (14) as do/df, as
well as the first-order frequency marginal, defined in
a manner analogous to Eq. (15). The FROG traces for
spectral cubic phase mirror the t(f) curve. This case il-
lustrates another convenient feature of the FROG trace:
even though FROG is in principle a time-domain tech-
nique, it is equally able to capture the important features
of a frequency-domain phase distortion, as is shown in
Fig. 7.
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The relationship between t(f) and the first-order fre-
quency marginal varies with the amount of spectral cu-
bic phase distortion. It appears therefore that we cannot
easily extract quantitative information directly from the
FROG trace in the case of spectral cubic phase without
the use of the pulse-retrieval algorithm.

DOUBLE PULSE

In the case of double pulsing, FROG can be used to im-
mediately extract the separation and relative phase of the
two pulses. Knowledge of the relative phase is essential
in experiments involving phase-related pulses.3 5 36 We
write the double-pulse electric field as

E(t) = exp(-at2 ) + B exp[-a(t - At)2 + icooAt], (28)

where B determines the ratio of the pulse heights, At is
the pulse separation, and wo is the carrier frequency of
the pulse. As in conventional autocorrelation, a double
pulse produces a FROG trace with three distinct features:
one at zero time delay and one each at ±At. The zero-
time-delay feature is a coherent superposition of two of the
spots, in which in the FROG trace-unlike conventional
autocorrelation-interference occurs. Since the tempo-
ral shift corresponds to a linear phase in the frequency
domain, this coherent superposition gives fringes in the
frequency direction in the FROG trace, as seen in Fig. 8.

These fringes are consistent with the known spectrum of
a double pulse, which consists of fringes.

The sequence of pulses shown in Fig. 8 shows the PG
FROG traces for two different pulse spacings At of the two
pulses but with the relative phase fixed at zero. The SD
and the SHG FROG traces are extremely similar and are
not shown here. The spacing of the fringes, Af, and the
separation of pulses, At, are related by the simple formula
Af At = 1. Thus we can use both the fringe spacing and
the spot separation of the FROG trace to determine the
pulse separation.

PG and SD FROG can also be used to measure the
relative phase of the two pulses. This information is
encoded in the phase of the fringes. In Fig. 9 we show
the PG FROG trace of a double pulse in which the two
pulses are r rad out of phase. The phase of the fringes
in the FROG trace is also shifted by vr rad. In general
the fringes in the FROG trace shift to lower frequencies
by an amount equal to the phase shift of the second
pulse [oAt in Eq. (28)]. (In SHG FROG the phase of
the fringes does not change, and thus it is difficult to
determine the relative phase directly from the SHG FROG
trace.) Even if the pulses are linearly chirped or self-
phase modulated, the fringes occur near the center of the
trace where the two spots overlap, even though the spots
themselves are tilted or curved. Thus PG and SD FROG
provide a simple way to measure the relative phase of two
separated pulses, a task that is otherwise quite difficult.
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Fig. 8. The PG FROG traces of two pulses of equal amplitude
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pulses move apart, the frequency of the fringes in the f direction
becomes higher. The separation of the two pulses is encoded
not only in this fringe spacing but also in the separation of the
two lower-intensity spots at -At. The SD and the SHG FROG
traces are similar.

PULSE COMPRESSION: SIMULTANEOUS
SELF-PHASE MODULATION AND
GROUP-VELOCITY DISPERSION

There are many cases of interest in which the phenom-
ena of SPM and GVD occur at the same time.2 7 A soli-
ton (which can occur in an optical fiber in the negative
GVD regime) is one of these cases, but because a soliton
is a transform-limited pulse, its FROG trace bears no re-
markable features and is easily recognized. As a result
this case requires no additional discussion.

In the positive GVD regime, where optical fibers are
used to broaden and chirp a pulse before compression
with a grating pair, the pulse emerging from the fiber has
a complex structure. The pulse characteristics in this
case are best described in soliton units. We choose to
consider a pulse that results from propagation of 0.2 soli-
ton length after beginning with an amplitude of 7 soliton
units (note that this pulse propagates in the presence of
positive GVD, so it is not a soliton; however, the equation
describing the propagation can be scaled in an manner
identical to that in the soliton case).

The FROG traces of this positively chirped pulse are
shown in Fig. 10(a)-10(c), and in PG and SD FROG they
exhibit the positive-slope characteristic of a positively
chirped pulse. This pulse, however, shows much more
structure than a simple linearly chirped pulse [compare
with Fig. 3(a)]. Note that the SD FROG trace has twice

the slope of the PG FROG trace, as for pure linear chirp.
The SHG FROG trace also exhibits considerable structure
but, as expected, shows a zero slope.

In a pulse compressor this pulse can be compressed
with relatively high efficiency by application of the proper
amount of negative GVD. In Fig. 10(d) we see the PG
FROG trace of the pulse after compression with negative
GVD (the SD and SHG traces are similar). The amount
of GVD was determined from the slope of the f(t) curve
for this pulse. The resultant compressed pulse is shorter
than the input pulse by a factor of roughly 6. The FROG
trace seems to spread a small amount near its upper and
lower extremes. Recalling the spectral cubic phase case,
we see that the presence of these dissimilar frequencies
at the leading and trailing edges of the pulse leads to the
well-known small satellite pulses, indicative of imperfect
compression of the pulse caused by nonlinear phase dis-
tortion. If the incorrect amount of GVD compensation
were used to compress the pulse, then some tilt, as well
as some structure, would remain in the FROG trace. The
direction of tilt would indicate whether too much or too
little GVD compensation was used. FROG thus provides
an excellent diagnostic for pulse-compression studies.

LINEAR CHIRP AND SPECTRAL
CUBIC PHASE

Another pair of phase distortions that often appear to-
gether are linear chirp and spectral cubic phase distortion.
When chirped pulse amplification is used, for example,
if the compressor is not adjusted properly, substantial
amounts of both of these phase distortions can be intro-
duced into the pulse. A pulse of this sort was recently
diagnosed by use of PG FROG.37 The FROG traces of
a pulse with these two phase distortions present simul-
taneously are shown in Figs. 11(a)-11(c). The traces
look similar to the traces for pure spectral cubic phase
[Figs. 7(a)-7(c)] but with a slight asymmetry that is due
to the presence of the linear chirp.

The amount of linear chirp in this pulse is quite sub-
stantial; b from Eq. (24) is chosen to triple the bandwidth
of the pulse over the transform limit (b = V- a). The
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Fig. 10. (a)-(c) FROG traces of a pulse after it has undergone SPM and positive GVD in a fiber. The pulse had an amplitude
of 7, and the fiber was 0.2 unit long, both measured in soliton units. The spectrum (not shown) of the pulse has a four-peaked
structure. The SD FROG trace has twice the slope as the PG FROG trace, as in linear chirp, while the SHG FROG trace again has
no slope. (d) PG FROG trace of the same pulse as (a) after the pulse has undergone negative GVD compensation. The pulse width
is roughly one sixth of its original length. The flaring out seen at high and low frequencies is evidence of imperfect compression
and leads to the well-known satellite pulses in the time domain (see text).

spectral cubic phase coefficient is d = r 3/343, as de-
fined in Eq. (27). This amount of spectral cubic phase
is quite small; in the absence of linear chirp, the tem-
poral intensity profile of the pulse does not exhibit any
visible satellite pulses. However, the addition of linear
chirp causes the pulse to acquire several substantial satel-
lite peaks, as shown in Fig. 11(d). Thus we see that the
presence of linear chirp amplifies the effects of spectral
cubic phase.

The FROG trace, too, reflects this fact. When only lin-
ear chirp is present, the FROG traces of this pulse look
like those in Fig. 3. When only the spectral cubic phase
is present, the FROG traces look almost like those of a
transform-limited pulse. Therefore a visual inspection of
the FROG trace would be useful when, for example, a
pulse compressor is being adjusted for minimum spectral
cubic phase. The linear chirp can be increased to mag-
nify the effects of spectral cubic phase, the cubic phase
minimized, and then the linear chirp minimized to give
the best possible compression.

Another characteristic feature of the combination of lin-
ear chirp and cubic spectral phase is evident in the PG
and the SD FROG traces. There are fringes in the FROG
trace near zero delay and at large and small frequencies.
These fringes are not present when only linear chirp or
several cubic phase are present and therefore are indica-
tive of the combination of these two phase distortions.

PHASE JUMPS
It is also interesting to consider the case of a pulse with
a smooth intensity envelope but with an abrupt phase
jump, that is, constant phase 90o for times t < 0 and then
a jump to a new constant-phase value, spo', for times t > 0.
The PG and the SD FROG traces for a pulse with a phase
jump of 9po - 'po' = or at pulse center are identical and
are shown in Fig. 12. The SHG FROG trace (not shown)
is similar but with a bright spot, rather than a dark
spot, in the center. These traces are best understood by
thinking of them as double-pulse traces, with the pulses
having less separation that those considered above. The
central regions in the trace of Fig. 12 show a similar type
of interference as in the double pulse traces.

INTENSITY SUBSTRUCTURE

Figures 13(a) shows a pulse with complex intensity and
phase structure. The PG FROG trace of this pulse,
shown in Fig. 13(b), reveals this complexity. (The SD
and the SHG FROG traces are quite similar in their
complexity, although of course the SHG FROG trace is
symmetric about the r = 0 axis.) If the pulse had a flat
phase, the FROG trace would be symmetric about the
f = 0 axis. Note that there is considerable structure in
the FROG trace, indicative of the considerable structure
in the pulse intensity and the phase profiles. Although
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Fig. 11. (a)-(c) FROG traces of a pulse with linear chirp and spectral cubic phase. The traces resemble the traces for pure spectral
cubic phase but with an asymmetry induced by the presence of linear chirp. (d) Intensity and phase profiles of a pulse with a small
amount of spectral cubic phase and with a combination of spectral cubic phase and linear chirp. The amount of spectral cubic phase
is the same in both pulses. The addition of linear chirp amplifies the effect of the spectral cubic phase considerably.

obtaining the details of the pulse substructure requires
running the iterative algorithm, it would be difficult to
misidentify a pulse with significant intensity (or phase)
substructure from its FROG trace.

EXPERIMENTAL EXAMPLE

We now show an example of reading phase information
about the pulse directly from an experimental FROG
trace. Figure 14(a) shows an experimental PG FROG
trace. This trace was discussed in detail in Ref. 28. The
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Fig. 12. PG FROG trace of a pulse with a phase jump of v at
pulse center and a Gaussian intensity profile. The SD FROG
trace of this pulse is identical.

pulse exhibits some positive slope, which is indicative of
positive linear chirp. There is also a slight curvature to
the trace, which indicates temporal cubic phase. Using
a only a ruler and pencil, we estimate the slope of the
trace to be b = 5.6 x 10-6 fs2 , where co(T) = bT, and the
curvature of the trace (after subtracting out the linear
slope) to be c = 1.6 X 10-8 fs3, where @(f) = cr2 . After
applying the scaling factors as determined by Eq. (16),
we can construct an estimate for the phase of the pulse.
In Fig. 14(b) we show the intensity and the phase ex-
tracted by the FROG pulse retrieval algorithm as well
as the phase constructed with the values cited above
(dashed curve). Although the agreement is not perfect,
it is reasonable, given the complexity of the structure of
this pulse. On pulses with simpler structure the tech-
nique will perform even more accurately.

CONCLUSION

Frequency-resolved optical gating (FROG), a simple and
convenient technique for fully characterizing ultrashort
pulses, also produces an intuitive trace: a type of spec-
trogram of a single pulse. Although a phase-retrieval al-
gorithm is necessary to extract exact information about
the phase and amplitude of the pulse, one can gain much
insight immediately by a simple visual inspection of the
FROG trace. This is because the FROG trace often gives
a close approximation to the instantaneous frequency as
a function of time, f(t), as well as directly displaying the
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chirp and temporal cubic phase. (b) Pulse intensity and phase
derived from the FROG trace of (a), as well as an estimate
(dashed curve) of the phase generated from a visual inspection
of the trace. Agreement is good, considering the complicated
structure of the pulse.

(approximate) temporal and spectral widths of the pulse.
The availability of this information in a visual, real-time
display is a great advantage for experimentalists work-
ing with ultrashort pulses.

Several experimental geometries can be used to
generate the FROG trace. In this investigation we
concentrated on the three most common geometries:
polarization gate, self-diffraction, and second-harmonic
generation. The qualitative and quantitative details of
the FROG trace vary considerably among the various
geometries.

One can extract quantitative information from a visual
inspection of the FROG trace. In this paper we have
provided the proper scaling factors necessary to do this
for various types of phase distortion. If only one type
of phase distortion exists in the pulse, this sort of quan-
titative estimation may be possible, but in general it is
much safer to use the pulse-retrieval algorithm to obtain
quantitative values.

While the mathematical algorithm required for full
pulse retrieval is not difficult and generally converges
quickly,'1 ",6 good intuition as to the characteristics of the
FROG trace are nevertheless helpful for its use. In this
paper we have provided a sampler of FROG traces for the
various FROG geometries and for a variety of represen-
tative pulse distortions, including linear chirp, spectral
and temporal cubic phase, self-phase modulation (SPM),
double pulsing, a combination of group-velocity dispersion
and SPM, phase jumps, and pulses with significant inten-
sity substructure. With this catalog it should be possible
to recognize a wide range of pulses almost immediately.
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