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Pulse retrieval in frequency-resolved optical gating
based on the method of generalized projections
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We use the algorithmic method of generalized projections (GP's) to retrieve the intensity and phase of an ultrashort
laser pulse from the experimental trace in frequency-resolved optical gating (FROG). Using simulations, we
show that the use of GP's improves significantly the convergence properties of the algorithm over the basic FROG
algorithm. In experimental measurements, the GP-based algorithm achieves significantly lower errors than
previous algorithms. The use of GP's also permits the inclusion of an arbitrary material response function in
the FROG problem.

Frequency-resolved optical gating (FROG) permits
the measurement of the time-dependent intensity
and phase of an ultrashort laser pulse without prior
assumptions on the form of the pulse.'"5 FROG sim-
ply involves frequency resolving an autocorrelation-
type signal, followed by using an iterative-Fourier-
transform-based phase-retrieval algorithm3'6 to
extract the intensity and phase of the laser pulse.
By use of various geometries, FROG has been real-
ized in the visible, infrared, and ultraviolet on pulses
ranging from 2 nJ to 300 ,uJ in energy and 40 to
300 fs in duration.1- 5' 7 -'0

The basic FROG algorithm as originally published3

yields rapid convergence for many pulses but gives no
guarantee of convergence and tends to stagnate for
complex pulses. A variety of additional techniques
improved convergence, but at a cost in complexity
and speed." In this Letter we apply the method
of generalized projections""3 (GP's) to the FROG
algorithmic problem. GP's are an extremely power-
ful technique, yet they enjoy a simple implementa-
tion and great intuitive appeal. We show how a new
GP-based algorithm generally converges even when
the basic FROG algorithm fails. We also demon-
strate that, when inverting data with noise (ex-
perimental data), GP's outperform the basic FROG
algorithm significantly. Finally, we show how the
use of GP's permits the inclusion of an arbitrary
material response, paving the way for the use of
noninstantaneously responding materials in FROG.

In the polarization-gate geometry for FROG
(Ref. 2) the FROG signal field takes the form

Esig(t, T) = E(t)IE(t - 7)12, (1)

where E(t) is the pulse electric field versus time and
r is the delay between the two pulse replicas. The
FROG trace is the squared magnitude of the Fourier
transform of this signal:

IIOG ~ ci),) =|J tEig,7eP~~t |. 22

IFROG(CW, T) = j-, dt Esig(t, r)exp(iwot) .(2)

The task of the FROG algorithm is to find a signal
field Esig(t, r) that satisfies two distinct constraints,
i.e., the mathematical constraint of Eq. (1) [the ability
to be generated from a physically realizable field E(t)
through a known nonlinear-optical process] and also
the constraint of Eq. (2) (that the magnitude squared
of its Fourier transform match the experimentally
measured FROG trace).

This situation is illustrated in Fig. 1, which shows
that the correct solution lies at the intersection of
the two sets of fields that satisfy the two individ-
ual constraints. The method of solution based on
projections is also diagrammed in Fig. 1. Starting
with an arbitrary signal field (which is most likely
not in either constraint set), a projection onto the
first constraint set is made. A projection of a point
onto a set involves moving to the closest point in-
side the set. We can accomplish this by minimizing a
distance metric between the starting point and a gen-
eral point in the set. From this new point a projec-
tion onto the second set is then performed, followed
by a projection back onto the first set, etc. By itera-
tively projecting onto the two sets, we will eventually
arrive at the intersection of the two sets, i.e., at the
correct answer.

Signal fields
satisfying
constraint 1

Correct
Solution

Fig. 1. Schematic of the method of generalized projec-
tions. The figure is pedagogical; in FROG the sets (which
reside in a higher-dimensional space) may be of a more
complicated structure.
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The sets shown in Fig. 1 are convex; a line seg-
ment between any two points in the set never leaves
the set. When both constraint sets are convex, we
speak of the method of projections, and convergence
is guaranteed. In the case in which one or both of
the constraint sets are nonconvex (in this case the
method is called GP's), convergence cannot be guar-
anteed mathematically (the method can become stuck
on protrusions in the constraint sets), but the method
is often found to work effectively despite this.12 This
is the case for FROG; although both constraint sets
are nonconvex, we find that GP's work well in the
FROG algorithm.

The details of the basic FROG algorithm were pub-
lished elsewhere.3'," Essentially it involves Fourier
transforming the signal field back and forth between
the time and frequency domains. The algorithm sat-
isfies the constraint specified by Eq. (2) by replacing
the magnitude of the current signal field in the fre-
quency domain by the square root of the intensity
IFROG(O, r) of the experimental FROG trace:

E~jg(W r) =Esig (o, 7rE.S,(&) I) = Esig(, r)I JIFROG(W), r). (3)

Magnitude replacement in this fashion was shown to
be a GP. 2

In previously published algorithms, satisfaction of
the constraint indicated by Eq. (1) involved a simple
integration and was not a GP. To implement a GP
for this constraint in polarization-gate FROG, we in-
stead minimize the following distance metric:

E= N r E j)ig(ti,) - E(t) I E(ti-A) (4)

where E'ig(t, r) is the inverse Fourier transform with
respect to co of E'ig(cW, i). The quantity E(t)IE(t -
r)12 is a general point inside the constraint set of
Eq. (1) (other FROG geometries would necessitate the
use of an appropriately modified distance function5).
The field E(t) that minimizes Z then forms the field
used for the index iteration of the algorithm. In
practice a single one-dimensional minimization along
the gradient of Z (Refs. 11 and 14) rather than a full
multidimensional minimization appears to be suffi-
cient and computationally less expensive [we use as
the starting point of the minimization the field E(t)
that began the cycle in Eq. (1)].

The double pulse, which consists of the coherent
sum of two Gaussian pulses separated by twice their
intensity full width at half-maximum, presents con-
siderable problems for the basic FROG algorithm
and was used as a test case for a previous study
on algorithmic improvements." Figure 2 shows the
performance of the basic FROG algorithm, the com-
posite algorithm incorporating the improvements de-
tailed in Ref. 11, and the GP-based FROG algorithm
in retrieving the double pulse. Whereas the basic
FROG algorithm stagnates at a very high error, the
GP-based algorithm successfully and quickly inverts
the double-pulse FROG trace. The composite algo-
rithm also inverts the pulse successfully; however,

it is much slower. We find that this observation ex-
tends to all pulses with significant intensity substruc-
ture; i.e., the GP-based algorithm is successful, the
basic FROG algorithm stagnates, and the composite
algorithm usually converges but does so more slowly.

In the case of experimental data, in which noise
is always present, the only quantitative measure of
performance is the rms difference between the exper-
imental FROG trace and the trace of the retrieved
field, i.e., the so-called FROG error 1 [when calcu-
lating FROG error for GP-retrieved traces, one does
not need to normalize the retrieved trace to its peak
value; its scale is set by Eq. (4)]. Using this mea-
sure, we find that the GP-based algorithm performs
significantly better than the basic FROG algorithm
on experimental data. On a series of polarization-
gate FROG traces of pulses from a regeneratively
amplified Ti:sapphire laser system we found that, in
19 of 20 traces, GP's performed better than the ba-
sic FROG algorithm. The average reduction in error
for these 19 traces was 35%, with the largest reduc-
tion being 50%. This improvement is also typical of
results with the second-harmonic generation FROG.

In Fig. 3 we see a polarization-gate FROG trace
of a pulse from an amplified Ti:sapphire laser.
Figure 4 shows the experimentally measured
spectrum compared with the spectra of the pulses
retrieved by the basic FROG algorithm and the
GP-based algorithm. The GP-based algorithm is
clearly superior in this instance, providing much
closer agreement with the experimental spectrum
than does the basic FROG algorithm.

The GP-based algorithm should not, however, en-
tirely supplant the basic FROG algorithm; rather,
it appears to complement it. This is because we
find that the basic FROG algorithm for pulses that
it is able to retrieve converges significantly faster
than the GP-based algorithm. For example, in re-

GP-based algorithm
1 .OE-11_OE-1 Composite algorithm
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Fig. 2. Error in the retrieved FROG traces as a function
of iteration number for the basic FROG algorithm, the
composite algorithm, and the new GP-based algorithm for
the double pulse. Whereas the basic FROG algorithm
stagnates, the GP-based algorithm successfully retrieves
this pulse. The composite algorithm also retrieves the
pulse, but it is much slower (for iteration numbers larger
than 50 the composite algorithm used the minimization
method, a much slower method in real time than the basic
or the GP-based algorithm).
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Fig. 3. Polarization-gate FROG trace of
Ti:sapphire laser pulse.
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Fig. 4. Spectra retrieved by the basic FROG algo-
rithm (long-dashed curve) and the GP-based algorithm
(short-dashed curve) from the trace of Fig. 3 compared
with the experimentally measured spectrum (solid curve).
Clearly the GP-based algorithm gives better agreement
with the experimental spectrum. The final rms error
between the experimental and reconstructed traces was
0.0134 for the basic FROG algorithm and 0.00801 for the
GP-based algorithm.

trieving a Gaussian pulse with self-phase modula-
tion, although both algorithms converge, the basic
FROG algorithm does so significantly faster (20 iter-
ations) than the GP-based algorithm (90 iterations).
It is thus generally advantageous to apply the ba-
sic FROG algorithm before switching to the GP-based
algorithm. An algorithm combining GP's, the basic
FROG algorithm, and the other improvements intro-
duced in Ref. 11 yields excellent convergence.

Finally, GP's can be used to include the response
of the sample material in FROG. The basic FROG
algorithm explicitly assumes an instantaneous ma-
terial response. However, the use of GP's permits
us to include an arbitrary material response function
in FROG. We write such an arbitrary material re-
sponse as

Esig(t, r) = f [E(t), r], (5)

where f can be any response function and may
include noninstantaneous terms. To use GP's to
retrieve a pulse from a FROG trace generated in a
material with the response f, we rewrite the dis-
tance metric Z as

N

Z =E IEJ'g(ti, r1) - f[E(ti), rj]I2.

This new distance metric is minimized with respect to
E(t) in the same fashion as Eq. (4) so as to implement
the projection onto one of the constraint sets. In this
manner, effects such as noninstantaneous response,
Raman effects, and saturation can be included in
the FROG pulse-retrieval algorithm. This technique
opens up a rich new area for FROG that, to our
knowledge, has yet to be explored.
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