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We discuss the use of second-harmonic generation (SHG) as the nonlinearity in the technique of frequency-
resolved optical gating (FROG) for measuring the full intensity and phase evolution of an arbitrary ultrashort
pulse. FROG that uses a third-order nonlinearity in the polarization-gate geometry has proved extremely
successful, and the algorithm required for extraction of the intensity and the phase from the experimental data
is quite robust. However, for pulse intensities less than -1 MW, third-order nonlinearities generate insuffi-
cient signal strength, and therefore SHG FROG appears necessary. We discuss the theoretical, algorithmic,
and experimental considerations of SHG FROG in detail. SHG FROG has an ambiguity in the direction of
time, and its traces are somewhat unintuitive. Also, previously published algorithms are generally ineffective
at extracting the intensity and the phase of an arbitrary laser pulse from the SHG FROG trace. We present
an improved pulse-retrieval algorithm, based on the method of generalized projections, that is far superior to
the previously published algorithms, although it is still not so robust as the polarization-gate algorithm. We
discuss experimental sources of error such as pump depletion and group-velocity mismatch. We also present
several experimental examples of pulses measured with SHG FROG and show that the derived intensities
and phases are in agreement with more conventional diagnostic techniques, and we demonstrate the high-
dynamic-range capability of SHG FROG. We conclude that, despite the above drawbacks, SHG FROG should
be useful in measuring low-energy pulses.

1. INTRODUCTION

The measurement of the intensity and the phase of
an ultrashort laser pulse has been a long-standing un-
solved problem. Most available methods, such as second-
harmonic generation (SHG) autocorrelation, provide
limited intensity information and no phase information. 1,2

Interferometric SHG autocorrelation and induced-grating
autocorrelation3 4 are equivalent to measuring only the
spectrum and the intensity autocorrelation of the pulse
and thus require a priori assumptions about the func-
tional form of the pulse envelope. A few recently de-
veloped methods do give the intensity and the phase56

but are experimentally unwieldy and cannot easily be
adapted to single-shot operation. Linear measurement
techniques cannot give any phase information unless
modulators or detection systems with several hundreds
of gigahertz of bandwidth are used.7 -9 This is not fea-
sible with currently available technology.

Recently, the technique of frequency-resolved optical
gating (FROG) was introduced.'1' 2 FROG overcomes
all the limitations mentioned above. It can determine
the intensity and phase evolution of an arbitrary ul-
trashort pulse on a single-shot or multishot basis. The
experimental apparatus is simple and can be assem-
bled within a day once the components are available.
FROG is not interferometric and is often automatically
phase matched, so that no critical alignment is needed.
FROG has been demonstrated in the ultraviolet, the vis-
ible, and the infrared for pulse intensities from 20 kW

to 1 GW (2 nJ to 100 AJ for a 100-fs pulse), where the
lower-power figure represents that used for the results
presented in the present paper. It has been demon-
strated in both single-shot and multishot configurations
on pulses that are nearly transform limited as well as in
pulses with linear chirp and spectral and temporal cu-
bic phase distortions. 1 0 1 2 3 FROG consists of two main
parts: first, an experimental apparatus in which two
replicas of the pulse to be measured are mixed in a
nonlinear-optical medium, and one spectrally resolves the
resulting mixing signal as a function of the time delay be-
tween the two replicas to create a so-called FROG trace,
and second, a phase-retrieval-based algorithm that ex-
tracts the complete intensity and phase evolution from
the experimentally generated FROG trace.

The FROG technique can use any nearly instanta-
neously responding nonlinear optical response. Second-
and third-order nonlinearities are optimal choices for the
technique. Recent research has focused on x(3)-based
nonlinearities for several reasons. First, the FROG
traces generated by third-order nonlinearities are more
intuitively appealing than second-order traces.1 4 For
almost all pulses of interest the X(3)-FROG trace is essen-
tially a plot of the instantaneous frequency as a function
of time and is therefore extremely valuable as a real-time
monitor of pulse parameters. The FROG trace gener-
ated with SHG is not nearly so intuitive and is not so
well suited as a real-time pulse monitor. Also, whereas
the third-order techniques are complete and unambigu-
ous, second-order techniques contain a time-reversal am-
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biguity, which is troublesome. However, when pulse
intensities are limited (below approximately 1 MW), a
second-order technique would appear necessary because
of its enhanced signal strength compared with third-order
techniques.

FROG with the use of SHG was first proposed and dis-
cussed, and the temporal ambiguity identified, in the ini-
tial FROG publications and patent. 1 ' 12 '15 It was noted
in these references that SHG FROG would be useful
for low-power pulses. The first experimental realiza-
tion of SHG FROG was recently published,'6 along with
a slightly modified version of the original FROG pulse-
retrieval algorithm used for polarization-gate (PG) FROG.
Unfortunately, this modified algorithm converges for
only a limited set of pulses and thus is unsatisfactory.
As a result, we have developed a new, improved algo-
rithm that uses the concept of generalized projections,
a more elegant, well-established technique that enables
the algorithm to converge for an extremely large set
of pulses. However, even with this improvement, and
availing ourselves of the additional techniques devel-
oped to aid the PG FROG algorithm,1 7 there are still
pulses (such as shaped pulses with complicated inten-
sity substructure) for which this improved SHG FROG
algorithm has difficulty. For this reason, among oth-
ers, it should be noted that, at present, x(3)-based FROG
techniques are to be preferred whenever sufficient pulse
power is available.

Nevertheless, there are many cases in which insuf-
ficient pulse power dictates the use of SHG FROG.
Consequently, in this paper we present a thorough ex-
ploration of the theoretical, algorithmic, and experimental
issues peculiar to SHG FROG. We review the theoretical
framework of SHG FROG and discuss the temporal ambi-
guity and its consequences. We review the basic FROG
algorithm and present the new algorithm. We discuss
experimental issues peculiar to SHG FROG that arise
from the nature of the second-order nonlinear process.
We then present the results of experimentally measured
pulses, including a verification of SHG FROG by compar-
ison with other pulse diagnostics, namely, the autocorre-
lation and the spectrum. We also demonstrate the use of
SHG FROG in measuring a higher-order phase distortion
and confirm the measurement of a pulse with a known
amount of linear chirp. Finally, we discuss an advantage
of SHG FROG: its ability to make high-dynamic-range
measurements.

2. THEORY

The FROG technique involves splitting the pulse to
be measured into two replicas and crossing them in a
nonlinear-optical medium (see Fig. 1). The nonlinear
mixing signal is then spectrally resolved as a function of
the time delay between two beams. In the case of SHG
FROG the noncollinear autocorrelation signal generated
in a frequency-doubling crystal is the nonlinear signal.
The envelope of the SHG FROG signal field therefore has
the form

Esig(t, r) = E(t)E(t - r),

is the delay between the two beams. This signal is then
used as the input to a spectrometer, and the intensity is
detected by a photodiode or CCD array to yield the FROG
trace

2

IFROG(W, ) =Lj dt Esig(t, )exp(iwot)

= IEsig(w, T)I7. (2)

The FROG trace is a positive real-valued function of two
variables: the frequency and the time delay between the
two pulses. This experimentally determined FROG trace
is then used as an input to a numerical algorithm, which
determines the full complex electric field, i.e., both the
intensity and the phase, of the pulse that created the
FROG trace.

Note that the signal field of Eq. (1) is invariant (except
for a trivial temporal offset) with respect to a change of
sign of the delay time , so that the SHG FROG trace is
always symmetric about r: IFROG(W, T) = IFROG(&), T)-
This leads to an ambiguity in the retrieved electric field
with respect to time, such that the field E(t) yields the
same FROG trace as E*(-t) (the complex conjugate here
appears because we restrict ourselves to the positive fre-
quency components of the field). This temporal ambigu-
ity is the main shortcoming of SHG FROG compared with
the X(3) FROG method. Not only is ambiguity in the re-
trieved field undesirable in itself but it also leads to unin-
tuitive traces and creates problems in the pulse-retrieval
algorithm, as we will see in Section 3 below.

To illustrate these points, consider a pulse with a
Gaussian intensity profile and a linear chirp, written as18

E(t) = exp(-at2 + ibt2). (3)

The normalized SHG FROG trace of this field can be
shown to be

-4(a3 + ab2)T2 - aoi2 1
IFROG(&, T) = exp 4(a2 + b2

) . (4)

The SHG FROG trace of a linearly chirped pulse is an
untilted ellipse that is independent of the sign of the chirp
parameter b. In other words, the SHG FROG trace is
identical for a pulse with positive or negative linear chirp.
This is to be contrasted with PG FROG traces, where
pulses with positive or negative linear chirp yield ellipses
tilted to have a positive or negative slope, respectively, so
that positive and negative chirp are easily distinguished.
In general, SHG FROG cannot distinguish between a
pulse and its time-reversed replica. One must employ

delay line

(1)

where E(t) is the complex envelope of the pulse to be
measured (the carrier frequency has been removed) and r
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Fig. 1. SHG FROG experimental setup. BS, Beam splitter.
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some other, as yet undetermined, method to ascertain the
direction of time for pulses retrieved with SHG FROG.

Note that the temporal ambiguity affects only phase
distortions that are even functions of time. Linear chirp,
which has a quadratic temporal phase dependence, has an
ambiguous sign in SHG FROG. However, a frequency
shift (a linear phase in time) or a temporal cubic phase
distortion (a cubic phase in time) does not have an am-
biguous sign. All orders of phase distortions specified in
the frequency domain appear to have ambiguous signs in
SHG FROG, however.

Practically speaking, this ambiguity is not so restric-
tive as it might appear. We often have some a priori
knowledge of the pulse that we can use in removing this
ambiguity. For example, pulses generally acquire posi-
tive linear chirp (unless one is working in the negative
group-velocity-dispersion regime) as a result of propaga-
tion through normal optics. Therefore one can determine
the direction of time of the retrieved pulse by requiring
the pulse to have a positive, rather than a negative, linear
chirp component. Also, for high-intensity pulses, some
self-phase modulation may occur. When the sign of the
nonlinear refractive index n 2 is known, as it is for most
materials, we can again ascertain the direction of time by
specifying the proper sign of the phase.

Another way in which one can remove the temporal
ambiguity is to obtain a second FROG trace of the pulse
after adding some known phase distortion to the pulse.
For example, one could generate a second FROG trace af-
ter passing the pulse through a known thickness of glass.
By directly subtracting the phases of the two retrieved
pulses and knowing the group-velocity dispersion of the
glass, one can easily determine whether the original pulse
was positively or negatively chirped (an originally posi-
tively chirped pulse will move farther from the trans-
form limit when passing through a material with positive
group-velocity dispersion, and vice versa).

It should be noted that, although the SHG FROG trace
is symmetric with respect to r, this restriction does not
apply to the pulse derived with the algorithm. If we use
a temporally asymmetric pulse to generate a SHG FROG
trace, the pulse-retrieval algorithm will output that asym-
metric pulse (or its time-reversed replica). We will see
an example of such a pulse below.

3. ALGORITHM

Once we have experimentally generated the FROG trace
in the laboratory, we must apply a numerical algorithm
to the data in order to determine the complete com-
plex envelope.12" 7 This algorithm is based on the itera-
tive Fourier-transform algorithms used in phase-retrieval
problems.1 9 The family of FROG algorithms is actually
more robust than standard phase-retrieval algorithms,
partially because of the existence of the constraint speci-
fied by Eq. (1), which is not available in, for example,
image-recovery problems.

The original basic FROG algorithm (developed for PG
FROG) published previously10"12 is not so effective at SHG
FROG as it is for PG FROG. A slightly modified ver-

sion of this algorithmic which included the application
of a spectral constraint, has also been suggested specifi-
cally for SHG FROG (henceforth we call that algorithm

the modified basic algorithm). Unfortunately, neither of
these algorithms converges for the types of pulse com-
monly observed, so we have found it necessary to intro-
duce a more mathematically powerful and elegant (as well
as intuitive) algorithmic technique, known as generalized
projections.2 0 Here we compare the performance of these
three algorithms.

We tested all three algorithms on a series of pulses
(namely, pulses with linear chirp, self-phase modulation,
temporal and spectral cubic phase distortion, and coher-
ent sums of as many as four Gaussian pulses with varying
amounts of self-phase modulation) in the absence of noise.
This set of pulses is the same set that we used previously
to test the PG FROG algorithm.'7 We applied the same
criterion for convergence as that in Ref. 17, namely, the
root-mean-square (rms) error between the original FROG
trace and the trace generated by the retrieved field. This
is constructed as

I N 1212

G = 2 [IFROG(cO, T) - IEsig(w, T)2]21 (5)

Both IFROG and IEsigI2 are normalized to a peak value of
unity before G is computed. A value of G less than 0.0001
is defined as convergence for noise-free (numerically
simulated) pulses. At this level of error the retrieved
field is visually indistinguishable from the original field.

The three algorithms that we tested are the basic
algorithm,12 the modified basic algorithm,16 and the
complete, composite algorithm, which uses generalized
projections (developed in this paper and described in
Section 4 below) as well as a host of other techniques de-
veloped for PG FROG.'7 These results are summarized
in Table 1.

We have found that the SHG FROG algorithms are
more sensitive to the initial guess than is the PG FROG
algorithm (which is relatively insensitive to the initial
guess). As a result, we have considered two different
initial guesses for each algorithm. The first is a pulse
with a Gaussian intensity profile and random phase noise,
labeled Noise in Table 1. The other initial guess, labeled
Smooth, is a Gaussian pulse with a slight linear chirp (1%
over the transform limit) plus a small (1% in intensity)
satellite pulse, located 1.1 FWHM away from the main
pulse. The asymmetric smooth initial guess appears to
improve convergence for asymmetric pulses.

Table 1 demonstrates the superiority of the full algo-
rithm. The other algorithms are satisfactory for only
the simplest possible pulses, whereas the full algorithm
converges for practically every pulse. Using the full al-
gorithm, we were able to retrieve all but one of the
test pulses with the smooth initial guess, and that pulse
was easily retrieved with the random-phase-noise initial
guess. The full algorithm was also much more success-
ful at retrieving experimental pulses, or pulses with noise
added to the FROG trace. Most of the noise-free pulses
converged within 100-200 iterations, where each itera-
tion required roughly 1 s on a 20-MHz, R2000-based UNIX
workstation.

The modified basic algorithm presented earlier16 em-
ploys a spectral constraint in order to aid convergence.
Spectral constraints were found to be ineffective in PG
FROG.'7 On the other hand, we have found that a
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Table 1. Comparison of the Various SHG FROG Algorithmsa
Full Algorithm

Basic Algorithm Modified Algorithm with Projections
Initial Guess Noise Smooth Noise Smooth Noise Smooth

Trans. Lim. Yes Yes Yes Yes Yes Yes
Lin. Chirp Yes Yes Yes Yes Yes Yes
SPM Yes Yes No No Yes Yes
SPM + P.L. No No No No Yes Yes
SPM + N.L. No No Yes* Yes* Yes Yes
TCP Yes Yes No No Yes Yes
SCP Yes Yes* No Yes* Yes Yes
Double Yes Yes No No Yes Yes
Satellite No Yes* No Yes No Yes
Complex 12% 12% 25% 0% 81% 94%
Total 36% 36% 100%

aThe simulated SHG FROG trace data were calculated on a 64 x 64 grid, and we employed Gaussian pulses with a FWHM of rFw = 10 units unless
otherwise stated. Functional forms of the electric fields are the same as those in Ref. 14. The types of pulse are as follows. Trans. Lim.: transform-
limited; Lin. Chirp: linearly chirped, with chirp parameter b = 4/rFW2, where the phase 0(t) = bt2 ; SPM: self-phase modulated, with Q = 3 rad of
phase change at the peak of the pulse; SPM + P.L.: a self-phase-modulated pulse combined with positive linear chirp (same magnitudes as those above);
SPM + N.L.: a self-phase-modulated pulse combined with negative linear chirp; TCP: temporal cubic phase, with chirp parameter c = 4/rFw 3 , where
the phase 0(t) = Ct3 ; SCP: spectral cubic phase, with a FWHM of 5 and chirp parameter d = 7rw 3/6.25, where the phase q(w) = d- 3; double: a double-
peaked pulse (FWHM = 6), with B = 1 (equal intensities) and separation D = 12; satellite: a double pulse (FWHM = 6), with B = 0.3 (9% intensity)
and D = 12; complex: a set of 16 different pulses, each a coherent sum of four Gaussian pulses with various widths, heights, and positions, both with
and without SPM (the percentage indicated here shows what percentage of these pulses were retrieved). The columns headed Noise used a pulse with
a Gaussian intensity profile and random phase noise as an initial guess, and the column heading Smooth indicates a Gaussian pulse with linear chirp
(1% above the transform limit) and a satellite pulse with an intensity 1% that of the main pulse, located 1.1 FWHM from the main pulse. An asterisk
indicates that the retrieved field was visually quite close to the correct field but the criterion for convergence defined in Ref. 17 was not met. Total
refers to the percentage of pulses retrieved for all initial guesses and all 25 pulse types used.

spectral constraint is helpful in SHG FROG, but only
if the spectrum is accurate and noise free. We have
found that constraining the field to match an inaccu-
rate spectrum is quite effective at preventing conver-
gence. The method used to generate the pulse spec-
trum from the FROG trace in Ref. 16, involving multiple
Fourier transforms and square-root operations, is sus-
ceptible to noise and aliasing effects and often yields a
somewhat inaccurate spectrum, even in the absence of
noise. It is possible that well-known, more reliable,
iterative deconvolution methods might better extract
the spectrum from the SHG FROG trace, but we be-
lieve that the use of a spectral constraint should be
avoided when possible. The improved full algorithm
discussed here does not employ the use of a spectral
constraint.

A source of difficulty for the basic FROG algorithm in
SHG FROG appears to be the existence of the temporal
ambiguity. One failure mode for the basic algorithm is
stagnation at a pulse shape that appears to be a combi-
nation of the correct pulse and its time-reversed replica,
which has the same FROG trace. (For example, in at-
tempting to retrieve a linearly chirped pulse, the algo-
rithm may stagnate on a pulse that has positive linear
chirp over part of its extent and negative linear chirp
over the rest of the pulse.) We believe that this pathol-
ogy is a manifestation of the temporal ambiguity dis-
cussed above. It is also likely that the complex nature
of the gate pulse hampers the performance of the SHG
FROG algorithm (in PG FROG the gate is a strictly real
function). 14

Another unusual feature of the SHG FROG algorithms
is that it appears to be more difficult to retrieve a pulse
with a flat phase than a pulse with significant phase dis-
tortion. Indeed, when converging to a transform-limited
pulse, the algorithm first finds a chirped pulse of equal

pulse width and then reduces the chirp until it becomes
negligible.

4. GENERALIZED PROJECTIONS

Central to the operation of the improved algorithm men-
tioned in Section 3 is mathematical concept known as
generalized projections.20 Projections offer a simple way
to visualize the operation of these types of iterative al-
gorithm, and they lend themselves to a powerful and
straightforward algorithmic implementation that consid-
erably increases the power of the FROG algorithm. We
shall now explain the concept of generalized projections.

In the FROG algorithm we are trying to select a sig-
nal field Esig(t, r) that satisfies two constraints. First,
its FROG trace as computed by Eq. (2) must match that
of the experimental data (this is constraint 1). Second, it
must be a field that can be generated by a physically re-
alizable electric field through Eq. (1) (this is constraint
2). We can imagine a function space of complex two-
dimensional functions in which each point represents a
single possible Esig(t, ). Then the values of Esig(t, )
that satisfy the above constraints form two sets, one for
each constraint. The intersection of these two sets rep-
resents the correct solution, as seen in Fig. 2. Once this
correct value of Esig(t, ) is found, the proper form of E(t)
is easily determined.10 2

The method of solution is also seen in Fig. 2. Begin-
ning with an arbitrary starting point, we move to the clos-
est point in the first set. This act of moving to the closest
point in a set is called a projection. After projecting the
starting point onto set 1, we then project it onto set 2,
etc. It is clear from Fig. 2 that, as we alternately project
onto the two sets, the trial solution will move closer and
closer to the correct solution. This is what is known as
the method of projections.
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[Eq. (1)] and that is closest, in some sense, to Esig'(t, r).
The metric that we use to measure this closeness is given
by

Correct
Solution

SolutionsA
satisfying
constraInt 2

Fig. 2. Illustration of the method of projections. In a space
consisting of all possible signal fields the fields that satisfy the
constraints of Eqs. (1) and (2) form closed sets. The correct
solution to the FROG problem is the intersection of these two
sets. In the method of projections we close in on the correct
solution as we iteratively move from the surface of one set to
that of the other.

The topological shapes of the sets are important in
this method. The sets shown in Fig. 2 are convex. This
means that a line connecting any two points in the set
does not leave the set. It can be shown that for two
convex sets the method of projections guarantees conver-
gence. If one or both of the sets are nonconvex, how-
ever, there is no mathematical proof of convergence of
this method (although in practice it is often the case that
the method does converge). In this case (in which one or
more of the sets is nonconvex) we speak of the method of
generalized projections.

In FROG neither of the constraint sets is convex: the
act of constraining the magnitude of the Fourier trans-
form to a prescribed form is a projection onto a noncon-
vex set,20 and the set of signal fields that satisfy Eq. (1)
is nonconvex because of the nonlinear nature of the sig-
nal field. Therefore there is no mathematical guarantee
of convergence for any FROG pulse-retrieval algorithm.
However, as we have seen in Section 3 above, the appli-
cation of the method of generalized projections is quite
effective in SHG FROG. We will now detail the applica-
tion of this method to the FROG problem.

The FROG algorithm is diagrammed in Fig. 3. The
algorithm begins with a trial solution for the field E(t).
We then generate a signal field from that trial field, using
Eq. (1), and Fourier-transform it into the (c, r) domain.
The squared magnitude of this frequency-domain signal
field Esig(,w, r) is the FROG trace of the trial field E(t).
Now we must apply the first projection, that is, constrain
the magnitude of this frequency-domain signal field to
the magnitude of the experimentally measured FROG
trace. This is accomplished simply by replacement of the
magnitude of the frequency-domain signal field with the
magnitude (square root) of the experimental FROG trace
while the phase is left unchanged:

Eig'(w, T) = IE8 g(w T) [IFROG(Oi, T]
IEsig(co, )I

(6)

This forms the projection onto the set of signal fields that
satisfy constraint 1, as given by Eq. (2).

After the first projection we inverse-Fourier-transform
the signal field back into the (t, T) domain to obtain
Egig'(t, r). In order to implement the second projection,
we must find the signal field that satisfies constraint 2

N
Z = Z IEig'(t, ) - E(t)E(t - T)12.

t,7=l
(7)

The right-hand term inside the squared modulus,
E(t)E(t - ), forms a new signal field that is guaranteed
to be inside constraint set 2. To find the new signal field
that is closest to Eig'(t, ), we minimize Z with respect
to E(t). The new signal field found by this minimization
is the field that corresponds to the projection of Esig'(t, r)
onto the set of fields satisfying Eq. (1), which is constraint
set 2. This projection provides us with the guess for E(t)
for the next cycle of the algorithm. In practice, we find
that it is not necessary to perform a global minimization
of the error Z. A single one-dimensional minimization
along the direction of the analytically computed gradient
of Z seems to suffice and is computationally much faster.
This minimization procedure is detailed elsewhere.'172

It involves treating the error Z as a single-valued func-
tion of 2N variables, these being the values of the real
and imaginary parts of E(t) at each of the N sampling
points of the array that holds the field.

The FROG algorithm as diagrammed in Fig. 3 is struc-
turally the same for the basic FROG algorithm and the
algorithm based on generalized projections. The differ-
ence between the two is the method in which a new
E(t) is generated from Esig'(t, r). Previously published
algorithms,'12"7 including the basic and modified basic al-
gorithms mentioned in Section 3 above, implemented this
second constraint in an ad hoc fashion. The use of a pro-
jection, as in Eq. (7), in implementing constraint 2 is the
main difference between the robust, improved algorithm
and the other, less effective algorithms.

The method of generalized projections is then com-
bined with the basic FROG algorithm, as well as other
types of FROG retrieval algorithm that we have named
overcorrection, intensity constraint, and minimization, as
described in an earlier paper.17 (Note that the intensity-
constraint method, which in PG FROG yields the intensity
envelope of the pulse, yields a time-reversed version of
the field in SHG FROG.) This new composite algorithm
monitors its own progress for stagnation and applies new
methods when necessary to ensure the maximum possi-
ble level of convergence. The combination of the method
of generalized projections and the other techniques of the
composite algorithm is extremely powerful.

Apply
Constraint

Ejig(t,) - E(t) o Esig(tt)TInverse
Fourier
Transform

Fourier
Transform

Esig(0,) .4 Esig(o,,)
Apply Experimental

Data

Fig. 3. Schematic of the FROG pulse-retrieval algorithm.
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5. EXPERIMENTAL CONSIDERATIONS

There are several issues relevant to performing an SHG
FROG experiment and to using the pulse-retrieval algo-
rithm to reconstruct the pulse that created the experimen-
tal FROG trace. In this section we will explore some of
these issues, such as maximum allowable conversion ef-
ficiency and crystal length, finding the zero time delay
position, and errors in the data calibration.

The accuracy of the SHG FROG technique depends on
maintaining the relationship between the input field and
the signal field as written in Eq. (1). This limits the con-
version efficiency that one can use when generating the
signal field. If the intensity at the crystal, and there-
fore the SHG efficiency, is too high, depletion of the input
fields will occur, and Eq. (1) will no longer be valid.

In order to determine the maximum allowable conver-
sion efficiency in SHG FROG, we consider the full solution
for SHG in the presence of pump depletion, given by22

ESHG(0- E(ttanh[aE(t)] , (8)

where a is some constant proportional to the length of
the crystal and the effective nonlinear coefficient. For
low field strengths the SHG field is essentially linear in
the square of the input field; however, at high fields, the
conversion efficiency decreases as the hyperbolic tangent
function departs from a linear behavior. When the ar-
gument of the hyperbolic tangent equals 0.174, there is
a 1% deviation from linear behavior. This is equivalent
to a 3% peak intensity conversion efficiency, which, for
Gaussian pulses, translates to a 2.1% energy conversion
efficiency. Thus, if we wish to maintain Eq. (1) to within
1%, we must keep the peak intensity conversion efficiency
below 3%. This is not a very restrictive constraint.

Another effect that can reduce the accuracy of SHG
FROG is group-velocity mismatch in the doubling crys-
tal between the fundamental and second-harmonic
beams.23 Group-velocity mismatch acts as a finite tem-
poral impulse-response function that is convolved with the
second-harmonic signal. The width of this response func-
tion is

tw=( Vj SHG -gfund)L, (9)

where vg is the group velocity. In the frequency domain
this effect acts as a frequency-dependent filter of the form

F(W) =[ sin(tw/2) 2 (10)

that multiplies the emerging SHG signal spectrum.
While this effect was found not to be critical in nor-
mal autocorrelation measurements (where one measures
only the integrated output SHG signal energy), in SHG
FROG it can be quite important (where the spectrum of
the SHG signal is needed). The result of this effect is
that the pulse retrieved by the SHG FROG algorithm will
have a narrower bandwidth than the actual pulse (thus
appearing closer to the transform limit than it actually
is), and its phase evolution can be highly distorted. It
is therefore advisable to keep t as small as possible (by
the use of thin doubling crystals, for example).

For a fixed pulse length and a given value of to the ef-
fect of group-velocity mismatch will be least critical for
transform-limited pulses, where the bandwidth is nar-
row, but will affect highly phase-distorted pulses more
strongly. For example, for a transform-limited pulse we
have found that even a value of t,,, equal to the FWHM of
the pulse lengthened the retrieved pulse (and narrowed
the retrieved spectrum) by only 10%. However, for a self-
phase-modulated pulse with 3 rad of peak phase change,
a t, of one half of the pulse FWHM resulted in a re-
trieved field that was longer by 30% and spectrally nar-
rower by 63% than the actual pulse. In general, we have
found that, as long as the half-width at half-maximum of
the spectral filter in Eq. (10) (which evaluates to 2.78/t.)
is larger than 1.4 times the spectral half-width at half-
maximum of the SHG signal [which is 4(ln 2)V2/tp for a
transform-limited pulse, according to Eq. (4)], the effects
of group-velocity mismatch should introduce a less than
10% error in the retrieved pulse parameters. For a fun-
damental wavelength of 800 nm and a crystal thickness of
300 jam, t. is 23.0 fs in potassium dihydrogen phosphate
and 56.6 fs in barium borate.

Another issue in data reduction is the symmetrization
of the SHG FROG trace. Because the SHG FROG trace
is symmetric in time, it is tempting to symmetrize explic-
itly the experimental SHG FROG traces about the delay
axis before we use them in the pulse-retrieval algorithm.
While this does indeed reduce the final error between the
experimental and reconstructed FROG traces, we have
found that this procedure tends to distort the pulses some-
what, for two reasons. First, if the trace has not been
centered in delay properly, symmetrizing the trace will
broaden it somewhat. Second, symmetrizing the noise
on the trace can actually increase its effect. The reason
is that the algorithm tends to ignore or smooth over com-
ponents of the SHG FROG trace that are antisymmetric
in delay, since these cannot be generated through Eqs. (1)
and (2). Therefore we feel it is best not to symmetrize
experimental FROG traces.

When one uses the pulse-retrieval algorithm, it is im-
portant to specify the exact location of the T = 0 point
To in the experimental FROG trace. However, one does
not usually know exactly where the zero-time-delay point
occurs in the experimental trace. In this case we take
advantage of the fact that the zero-order delay margin,

(11)

which is, in fact, the usual second-order intensity autocor-
relation in SHG FROG,'4 has its peak at r = 0. In gen-
eral, the peak of the zero-order delay margin will not occur
at one of the input time delays; that is, the o point will
occur between pixels on the FROG trace. Since the in-
tensity autocorrelation is necessarily symmetric, we have
found that the best way to determine the zero-delay posi-
tion is through a first-moment approach such as

fdTrMT(T)

L d M(r)
(12)

The FROG trace is then shifted to be centered at this
value of delay by linear interpolation between adjacent
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Fig. 4. SHG FROG trace of a laser pulse from a Ti:sapphire
oscillator. This trace consists of 39 individual spectra of the
autocorrelation of the pulse, each taken at a different time delay.

pixels in the input data. This procedure helps us to
achieve a low error between the experimental FROG trace
and the reconstructed FROG trace and higher fidelity in
the reconstructed pulse. We have found, however, that
errors incurred in centering the FROG trace to only the
nearest pixel, without interpolating to fractional pixel
spacings, are usually quite small.

When putting experimental data into the FROG algo-
rithm, one must specify the size of the increment both
in time and in wavelength, as well as the central wave-
length of the data. Errors in specifying these parame-
ters will lead to error in the resulting pulses retrieved by
the FROG algorithm. We have explored this source of
error by taking FROG traces generated by noise-free (nu-
merically simulated) pulses as input data and supplying
the algorithm with deliberately incorrect wavelength and
time calibrations.

We find that, when these calibrations are inaccurate,
the pulse parameters, such as FWHM, spectral width, and
amount of phase distortion, are all affected. Generally,
the amount of error in these parameters will be of the
order of the inaccuracy in the input calibration. For ex-
ample, if the temporal calibration for the experimental
FROG trace is incorrect by 10%, we can expect the param-
eters of the retrieved pulse to be inaccurate by approxi-
mately 10%, to within a factor of 2. The exact amount
of error will vary according to the individual pulse. The
step sizes in the temporal and frequency domains are
related by the Fourier transform, so that errors in the
temporal calibration can lead to errors in the spectral
width and the amount of phase distortion as well as in the
FWHM of the pulse. Errors in specifying central wave-
length, which relates the time and wavelength scales,
also introduces calibration errors. Also, the functional
form of the retrieved pulse will be affected by calibration
errors.

These points are illustrated by the following examples,
in which calibration factors that were too small were used
to retrieve pulses. For a linearly chirped pulse a 20% er-
ror in temporal calibration leads to a retrieved pulse that
is linearly chirped but with a 20% error in pulse width and
is 21% closer to the transform limit. A 20% error in the
wavelength calibration leads to a 20% error in the spectral
width of the retrieved pulse, which is also 21% closer to
the transform limit. For a pulse with self-phase modula-
tion the situation is more complex. A 20% error in speci-
fying the temporal calibration leads to a retrieved pulse
with a 33% error in pulse width, a 32% error in spectral

width, and a 28% error in total phase excursion. This
retrieved pulse is 36% closer to the transform limit than
the initial pulse. A 20% error in specifying the wave-
length calibration leads to a 16% error in the retrieved
pulse width as well as a 46% error in the spectral width
and a 27% reduction in total phase excursion, resulting
in a retrieved pulse that is 37% closer to the transform
limit than the original pulse. From these results we can
see that the effect of incorrect calibrations will be quite
different for differing pulses.

6. EXPERIMENTAL RESULTS

We have used SHG FROG to measure pulses from a
Spectra-Physics Tsunami Ti:sapphire oscillator oper-
ating at a center wavelength of 800 nm. The laser
pulse was split into two, and the gate pulse was passed
through a variable time delay (realized by a stepper-
motor-controlled stage), as in Fig. 1. The two beams
were focused at an angle of 0.8° in a background-free
autocorrelation geometry into a potassium dihydrogen
phosphate crystal (300 pum thick) by a 50-cm focusing
lens. The pulse energy at the crystal was 1-2 nJ. The
conversion efficiency to the second harmonic was less
than 10', well within the range dictated by relation (8).
The spectrum of the second harmonic was recorded for 39
separate time delays. The spacing between time delays
was 10 fs. A background spectrum of dark current and
scattered light, taken when the two pulses were delayed
by more than 1 ps, was subtracted from all the data.
The group-velocity mismatch parameter of the potassium
dihydrogen phosphate crystal can be calculated from
Eq. (9) to be t = 23 fs. This value of t,, should not
affect the measurements of the transform-limited pulses
below; however, for spectrally broader pulses this could
become a problem.

FROG traces were obtained for a wide range of operat-
ing conditions, and intensity and phase evolutions were
obtained with the use of the new algorithm. A typical
SHG FROG trace is shown in Fig. 4. The SHG FROG
trace appears fairly smooth, with a small asymmetry in
the wavelength direction. The SHG FROG trace is sym-
metric with respect to 7, in agreement with Eq. (1). Us-
ing these data as input to the pulse-retrieval algorithm,
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Fig. 5. Intensity (solid curve with circles) and phase (dashed
curve with diamonds) of the pulse retrieved from the FROG trace
of Fig. 3. The pulse has a 90-fs FWHM. The final FROG error
for this retrieved pulse was G = 0.00156.
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Fig. 6. Measured autocorrelation (solid curve) of the same laser
that created the FROG trace of Fig. 3 and numerical autocorre-
lation (circles) of the retrieved pulse of Fig. 4. The agreement
between the laboratory measurement and the pulse retrieved
through FROG is excellent.
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understand the amount of phase distortion from such
measures, illustrating once again the importance of mea-
suring the intensity and the phase of the pulse directly
with a technique such as FROG.

In order to ascertain the accuracy of the retrieved
pulse, we can make a comparison with the indepen-
dently measured autocorrelation and spectrum of the
pulse, two easily measured and well-understood quan-
tities. We measured the autocorrelation of this pulse,
using a Femtochrome autocorrelator, and we also mea-
sured the spectrum of the pulse with a spectrometer.
We now compare these experimental quantities with the
analogous ones calculated numerically with the pulse de-
picted in Fig. 5. The comparison is shown in Figs. 6
and 7. Figure 6 shows the experimentally measured au-
tocorrelation of the pulse as well as the numerical au-
tocorrelation of the pulse retrieved by the algorithm.
The agreement is remarkable, and the two curves are
practically indistinguishable. Figure 7 shows a similar
comparison for the spectrum. Again, the agreement is
excellent. The pulse retrieved by SHG FROG is thus
in excellent agreement with the autocorrelation and the
spectrum of the laser pulse.

The method of SHG FROG is also able to retrieve pulses
with more complicated phase profiles. Figure 8 shows
the SHG FROG trace of a pulse from the Ti:sapphire

380

840

Fig. 7. Comparison of the experimentally measured spectrum
(solid curve) of the laser that created the FROG trace of Fig. 3
with the numerically generated spectrum (circles) of the retrieved
pulse of Fig. 4. The agreement between the laboratory mea-
surement and the pulse retrieved through FROG is excellent.
The phase of the spectrum (dashed curve with diamonds) as
retrieved from the FROG pulse-retrieval algorithm is also shown.

we extract the electric field shown in Fig. 5, using a
128 x 128 pixel FROG trace. The convergence param-
eter G was 0.00156, a small value for experimental data.
We find that this pulse has an intensity FWHM of 90 fs.
The pulse has a small amount of phase distortion that is
mostly quadratic (linear chirp) with a chirp parameter of
b = 1.3 X 10-4 fs-2. The large phase fluctuations seen
in the wings of the pulse are inconsequential, as the in-
tensity is extremely low. The time-bandwidth products
of this pulse are AtAf = 0.487 if we use the (temporal
and spectral) FWHM of the pulse and AtAw = 0.708 if
we use the rms measure of pulse (temporal and spectral)
width. The time-bandwidth products for a transform-
limited Gaussian pulse are 0.441 and 0.5, respectively.
We find that the pulse rms (FWHM) intensity width
is broadened by 17% (60%) over the transform-limited
pulse (defined as the inverse Fourier transform of the
pulse spectrum with a flat phase). Similarly, the rms
(FWHM) spectral broadening caused by the nonzero tem-
poral phase of the pulse is 23% (12%). It is difficult to

-

0
C
4)
4)

co

385

390

395

400

-200 -100 0 100
Time Delay fs)

200

Fig. 8. SHG FROG trace of a pulse from a Ti:sapphire oscillator
with excess glass in the cavity. The horseshoe characteristic is
indicative of spectral cubic phase distortion.
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Fig. 9. Electric-field intensity (solid curve with circles) and
phase (dashed curve with diamonds) associated with the SHG
FROG trace of Fig. 7. The li-phase-shifted satellite pulse is
indicative of spectral cubic phase distortion. The convergence
parameter was G = 0.00350.
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Fig. 10. Spectral intensity (solid curve with circles) and phase
(dashed curve with diamonds) of the pulse of Fig. 8. Here we
see clearly the cubic dependence of the phase in the spectral
domain.
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Fig. 11. Intensity (solid curve with circles) and phase (dashed
curve with diamonds) pulse from a Ti:sapphire laser retrieved
through SHG FROG (G = 0.00312) before propagation through
BK7 glass. The pulse, centered near 750 nm, is 90 fs wide
(FWHM).

oscillator operating near 780 nm when a large amount
of glass was present in the cavity. The experimental
data were taken at 43 separate time delays. We see
the horseshoe characteristic that is indicative of spectral
cubic phase distortion.' 4 The retrieved electric field in
the time domain is shown in Fig. 9, where G was 0.00350
on a 128 128-pixel FROG trace. This pulse shows
the phase-shifted satellite pulse characteristic of spectral
cubic phase distortion. The intensity and the phase of
the spectrum, shown in Fig. 10, confirm this observation.
Here the cubic component of the spectral phase is clearly
visible. Thus we see that it is indeed possible to retrieve
temporally nonsymmetric pulses, as well as those with
higher-order phase distortions, by means of SHG FROG.

Finally, we have also tested the accuracy of the SHG
FROG algorithm by imparting a known phase distortion
to a pulse. We took the pulse shown in Fig. 11 (measured
by SHG FROG, where G = 0.00312), which is a nearly
transform-limited pulse at a wavelength of 750 nm with a
FWHM of 90 fs, and propagated it through 6.5 cm of BK7
glass. We then measured the resulting lengthened pulse
with SHG FROG, with the resulting electric field shown in
Fig. 12 (G = 0.00270). We see that the pulse has spread

to a FWHM of 179 fs and has acquired a strong quadratic
phase, with b = 8.3 X 10-5 fs- 2 . By numerically propa-
gating the pulse of Fig. 11 through 6.5 cm of BK7 glass
[group-velocity dispersion of 495 fs 2/cm (Ref. (24)], we ob-
tain a pulse with a FWHM of 169 fs and a chirp parame-
ter of b = 8.0 x 10-5 fs-2, both of which are within 6% of
the measured values. This measurement confirms that
it is indeed possible to measure the phase of a pulse quite
accurately by using SHG FROG.

Finally, one advantage of SHG FROG that has not been
noted previously is the potential for high-dynamic-range
measurements. This potential occurs because in SHG
FROG the signal field is at a different frequency than that
of the input fields, and thus SHG FROG is totally immune
to scattering of the input fields. The main source of
optical noise is scattering of the second harmonic of the
input fields, which is much smaller in intensity. We can
therefore expect high-dynamic-range measurements to be
possible. This is illustrated in Fig. 13. Here we have
plotted the retrieved (G = 0.00108) intensity in the time
and frequency domains on a logarithmic scale. We see
that the noise floor of the retrieved pulse is roughly 10i.
The data had a maximum of 30,226 counts, with 1-3
counts of residual dark-current noise after background
subtraction. We therefore see that the dynamic range of
the retrieved pulse is essentially limited by the dynamic
range of the input data. With care, the dynamic range
of the data in a SHG FROG experiment can be increased
even further.

7. SUMMARY

We have discussed both the experimental and the algo-
rithmic implementation of SHG FROG. We have pre-
sented a new, much more robust algorithm for retrieving
the complete intensity and phase of pulses measured with
this technique. We discussed experimental limitations
and showed experimental confirmation of the accuracy of
the technique. We have demonstrated the technique on
several pulses, including one with cubic spectral phase
distortion.
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Fig. 12. Intensity (solid curve with circles) and phase (dashed
curve with diamonds) of the pulse of Fig. 11 after propagation
through 6.5 cm of BK7 glass. The pulse has broadened to 179 fs
and has acquired a substantial quadratic phase. The width and
the phase curvature of this pulse (G = 0.00270) are extremely
close to predictions from theory (see the text).
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Fig. 13. SHG FROG can achieve a large dynamic range in
the retrieved pulse. Here we see the (a) temporal and the
(b) spectral intensities of a pulse retrieved with SHG FROG
(G = 0.00108) plotted on a logarithmic scale. The dynamic
range of the retrieved pulse is limited by the dynamic range of
the data, which had a maximum of 30,226 photoelectron counts
and a noise background of 1-3 counts.

Although SHG FROG faces some difficulties compared
with FROG that uses third-order nonlinearities (an am-
biguity in the direction of time, traces that do not con-
tain much intuitive information, and a somewhat less ro-
bust algorithm), we think it will become a valuable tool
for pulses that are too weak to be measured with third-
order techniques. Also, SHG FROG is useful when high-
dynamic-range measurements are needed.
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Note added in proof It has come to our attention that
the first experimental SHG FROG traces were reported
by Ishida et al.25 rather than in Ref. 16, although the
intensity and the phase of the pulse were not recovered.
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