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Abstract: We present a remarkably simple technique for measuring the full 
spatio-temporal electric field of a single ultrashort laser pulse. It involves 
capturing a large digital hologram containing multiple smaller holograms, 
each of which characterizes the spatial intensity and phase distributions of 
an individual frequency component of the pulse. From that single camera 
frame, we numerically reconstruct the complete electric field, E(x,y,t), using 
a direct algorithm. While holography requires a well-characterized 
reference pulse, this pulse can easily be generated from the pulse itself in 
most cases, so the technique is self-referencing. We experimentally 
demonstrate this technique using femtosecond pulses from a mode-locked 
Ti:Sapphire oscillator. 
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1. Introduction 

The measurement of the spatial or temporal intensity-and-phase profile of ultrashort pulses is 
now a standard procedure in ultrafast optics laboratories. In many situations, however, 
separate spatial and temporal measurements are insufficient, and the measurement of the 
complete spatio-temporal dependence of the pulse is necessary. For example, a pulse can be 
contaminated by spatio-temporal distortions that limit the performance of an ultrafast system 
(notably in the case of amplified pulses). Or the pulse may have been used to excite or probe 
complex media with time-varying spatial structure. Indeed, spatio-temporal distortions are 
quite common, and only very carefully aligned ideal pulses/beams can be considered to be 
free of them. 

A highly detailed, multi-dimensional pulse characterization—the (4D) field as a function 
of all three spatial dimensions and time, E(x,y,z,t)—is thus highly desirable. But, because 
digital cameras and other optoelectronic sensors are obviously limited to only two 
dimensions, standard techniques yield at best only 2D information, E(x,t) or E(x,y), from a 
single data frame. Such techniques include linear and nonlinear spectral interferometry [1-4], 
sometimes combined with frequency-resolved optical gating (FROG) [5], direct wave-front 
sensing [6-8], and digital holography [9-11]. 

The complete 4D measurement problem is not hopeless, however. It is sufficient to be 
able to measure the 3D field, E(x,y,t) at a single plane, z = z0. This is because it and the 
Fresnel integral yield the field’s dependence on the z-coordinate, too (that is, the complete 4D 
measurement), when propagation through free space (or known optics) is involved. 

To measure the 3D electric field, E(x,y,t), or equivalently, E(x,y,ω), multiple camera 
frames can be combined. This is usually accomplished by measuring the field vs. two of the 
dimensions using a camera, while scanning the remaining dimension and acquiring multiple 
camera frames. In fact, we recently demonstrated self-referenced multi-shot 3D 
measurements of the intensity and phase of the full field E(x,y,t) by a combination of 
wavelength-scanned digital holography and FROG [12]. But, because a scan of the 
wavelength is required as multiple frames of data are recorded, a stable train of identical 
pulses is required in this type of experiment. This requirement can be prohibitive, however, 
especially for systems that operate at very low repetition rates or have fluctuations in the field 
from shot to shot. 

To overcome this limitation, we introduce here a device capable of measuring the 
complete 3D spatio-temporal electric field E(x,y,t) on a single-shot. Instead of recording 
multiple digital holograms for different wavelengths sequentially in time [12], we record 
them simultaneously in a larger two-dimensional camera frame. This large digital hologram 
contains all the necessary information to numerically reconstruct the full 3D electric field 
E(x,y,t). For that reason, we call our technique Spatially and Temporally Resolved Intensity 
and Phase Evaluation Device: Full Information from a Single Hologram (STRIPED FISH).  

Setups for the simultaneous recording of a few holograms have been introduced in the past, 
but these involve a set of beam-splitters (or a special cavity) to generate a few replicas that must 
all be synchronized using delay lines [13]. As a result, they do not scale very well as the pulse 
becomes more complex in time (or frequency) and the number of necessary holograms 
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increases. STRIPED FISH, on the other hand, involves a remarkably simple and elegant 
arrangement comprising only two main components that readily generate a large number of 
holograms and should, in principle, scale to complex pulses in space and/or time. Also, the 
multiple digital holograms may be obtained by interfering the pulse under test with a well-
characterized reference pulse or, alternatively, with a spatially-filtered replica of the pulse 
itself whose (spatially-uniform) spectral intensity and phase are measured by FROG. Thus 
STRIPED FISH is self-referencing, and so should be ideal for low-repetition-rate systems. 

2. Principle of operation 

We first briefly recall how digital holography can be used to reconstruct the intensity and phase 
of the spatial electric field E(x,y) of a monochromatic laser beam [10]. It involves crossing the 
“signal” beam (the beam to be characterized) and a “reference” beam (a pre-characterized beam) 
at a small angle α, in, say, the vertical plane. One then measures the corresponding intensity 
I(x,y), or “digital hologram”, using a digital camera: 

  
2 2 * sin * sin( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )iky iky

s r s r s r
I x y E x y E x y E x y E x y e E x y E x y eα α−= + + +  (1) 

Because the last term of Eq. (1) contains the modulation term, exp(iky sinα), we may readily 
extract it from the measured intensity I(x,y) using a well-established algorithm [14], which 
involves Fourier filtering the hologram and retaining only the last term. Assuming that we know 
the electric field of the reference pulse, Er(x,y), we can obtain the electric field of the signal 
pulse, Es(x,y), which contains both the spatial intensity (“beam profile”) and the phase (“wave-
front”) of the beam. 

A holographic technique generalized for broadband pulses/beams, rather than 
monochromatic beams, involves frequency-filtering the reference and signal pulses and 
generating monochromatic holograms for each frequency in the pulses. If we perform the 
reconstruction process at different frequencies ωk spaced by δω, which satisfy the sampling 
theorem and which cover the bandwidth of the signal and reference pulses, we obtain the 
electric field E(x,y) for each frequency ωk. If the reference pulse’s spectral phase is also known, 
it is then easy to reconstruct the signal field in the frequency domain, which then yields the 
complete field in the time domain: 
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In contrast to multi-shot setups that rely on a scan of the wavelength to reconstruct E(x,y,t) 
[12], STRIPED FISH only requires a single camera frame to do so. We still cross the signal and 
the reference pulses at a small vertical angle, but we additionally generate multiple digital 
holograms on a single camera frame to obtain the complete spatial and spectral dependence of 
the signal pulse in a remarkably simple single-shot geometry. 

The STRIPED FISH principle is illustrated in Fig. 1. It involves generating multiple 
holograms, one for each frequency component in the pulse and then combining them to yield 
E(x,y,ω). Specifically, this entails interfering the signal pulse with the pre-characterized 
reference pulse at a small vertical angle α (about the x-axis) as in standard holography. But 
then these two pulses pass through a low-resolution 2D diffraction grating, which generates a 
2D array of replicas of the incident signal and reference pulses, yielding an array of 
holograms, all with horizontal fringes, where the beams cross. The second component of 
STRIPED FISH, a tilted interference band-pass filter or etalon, spectrally filters the beams 
into wavelengths that depend on the horizontal propagation angle [15, 16], because the band-
pass filter is tilted by an angle β about the y-axis in the x-z (horizontal) plane. Finally, we also 
orient the 2D diffraction grating so that it is rotated slightly about the optical axis z. As a result, 
the hologram array is also slightly rotated, so each hologram involves pairs of beams of a 
(uniformly spaced) different wavelength. The resulting quasi-monochromatic holograms, each 
at a different color, yield the complete spatial field (intensity and phase) for each color in the 
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pulse and can then be combined to yield the complete spatio-temporal field of the signal pulse, 
E(x,y,t). A single camera frame is all that is required. 

 

 
Fig. 1. Principle of operation of STRIPED FISH to measure E(x,y,t). (a) View in the x-y-z space. 
(D): diffractive element; (F): band-pass interference filter; (C): digital camera. The signal and 
reference pulses are crossed at a small vertical angle α. The diffractive element (D) is rotated by 
an angle φ about the z-axis, and the filter (F) is rotated by an angle β about the y-axis. The inset 
shows one of the spatial interferograms (“digital holograms”) captured by the digital camera. (b) 
Side view (y-z plane) showing the signal and reference beams crossing at an angle. (c) Top view 
(x-z plane) showing how the frequencies transmitted by the band-pass filter increase with position 
x. 

 
We choose the spatial period of the 2D grating to be much larger than the wavelength of the 

beams, so that many orders are diffracted at small and different angles.  At the same time, we 
also choose the spatial period to be smaller than the beam spatial features that need to be 
resolved. As long as the bandwidth of the input beam is small compared to its central 
wavelength, angular dispersion within each diffracted order remains negligible. 

3. Reconstruction of the electric field from a measured STRIPED FISH trace 

To obtain the complex electric field E(x,y,ω), we apply the standard reconstruction algorithm to 
the measured STRIPED FISH trace (Fig. 2). It involves first performing a 2D Fourier transform 
of the STRIPED FISH trace. When the different holograms are well separated [Fig. 2(a)], the 
only spatial fringes that are visible are the ones due to the small vertical crossing angle α 
between the signal and the reference pulses. Therefore, in the Fourier domain [Fig. 2(b)], we 
expect to obtain one central region corresponding to the non-interferometric terms, and two 
other regions corresponding to the interferometric terms due to the crossing angle α. We only 
retain the upper region, which is the equivalent of the last term of Eq. (1), and we inverse-
Fourier-transform that region to obtain a complex-valued image [Fig. 2(c)]. 

This image contains a collection of spectrally-resolved complex electric fields E(x,y) 
measured at various frequencies, once we divide by the field of the reference pulse. These 
electric fields are distributed over the camera frame and need to be centered one by one. We use 
data from a reference experimental image obtained from a pulse free of spatio-temporal 
distortions to find the beam center corresponding to each spatial electric field, so that the data 
can be reorganized in a 3D data cube, E(x,y,ω). During this registration step, each digital 
hologram is assigned a frequency ωk using calibrated data previously obtained by measuring the 
spectra of the various diffracted beams [see Fig. 2(c)]. 

Finally, we apply Eq. (2) to reconstruct the field E(x,y,t) in the time domain. Using 
diffraction integrals, we can also numerically propagate the electric field through known 
elements along the z direction if desired to attain the full 4D spatio-temporal field. 

The spatial resolution of STRIPED FISH is limited by three effects: the angular dispersion 
introduced by the diffractive grating, the period of the grating itself, and the size of the filtering 
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window in the Fourier domain. Although the 2D grating introduces some angular dispersion 
within each digital hologram, slightly blurring the spatial profile of the beam, a very narrow 
band-pass filter may be used to reduce this effect (except in the case of extremely short pulses) 
at the expense of a decreased throughput. The period of the diffractive element also limits the 
spatial resolution, although the input beam can be expanded to compensate for that effect, as 
long as a large-area digital camera is used. Finally, the spatial resolution can also be limited by 
the size of the filtered window in the Fourier plane, limiting the spatial resolution to a few 
pixels. In practice we are restricted by this last effect. 

Similarly, the spectral resolution is also controlled by two separate factors: the bandwidth δλ 
of the band-pass filter, and the number N of holograms that fit on the digital camera. The latter 
is usually the limiting factor: the spectral resolution is then simply a fraction of the pulse 
bandwidth Δλ/N, where Δλ is the pulse bandwidth. 

 

 
Fig. 2. Algorithm used to reconstruct the 3D electric field from a single camera frame. A 2D fast 
Fourier transform is applied to a simulated STRIPED FISH trace (a). The interferometric terms 
are selected in the Fourier plane (b), and transformed back to the original x-y plane (c). The 
resulting image contains both the spatial amplitude and phase, at the expense of a loss of vertical 
spatial resolution. A registration step is applied to center all the spatial distributions, and to assign 
the calibrated wavelengths, in order to obtain the multi-spectral complex data E(x,y,ω) (d). 

 

Note that it is possible to favor the spectral resolution by using more (but smaller) 
holograms, which will in turn decrease the spatial resolution. Conversely, one could favor the 
spatial resolution using larger (but fewer) holograms. Thus, there is a trade-off between spatial 
and spectral resolution. We can quantify the overall performance of STRIPED FISH with regard 
to beam/pulse complexity: in our case the maximum time-bandwidth (TBP) product that we can 
hope to measure is roughly equal to the number of holograms that are captured. Similarly, the 
maximum space-bandwidth product (SBP) is approximately equal to the number of spatial 
points obtained by the reconstruction algorithm. In the end, the amount of information (number 
of independent data points), and therefore the maximum pulse complexity that our STRIPED 
FISH device can measure is estimated by introducing the space-time-bandwidth product, equal 
to TBP×SBP, which is on the order of 105 in our case. The space-time-bandwidth product may 
be increased by expanding the beam to be characterized, and by using a larger-area digital 
camera with a higher pixel count. 
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4. Experimental setup and results 

As a proof of principle, we set up a STRIPED FISH device as a Mach-Zehnder interferometer 
[Fig. 3(a)]. A first beam-splitter is used to separate an incident ultrashort pulse (800 nm) from 
a mode-locked Ti:Sapphire oscillator into a reference and a signal pulse. Pulses from the 
oscillator are routinely monitored with a single-shot FROG device [17] to ensure they are 
close to their transform limit. The pulse to be characterized is then obtained from the signal 
pulse before the two pulses are recombined at a second beam-splitter. This recombination is 
quasi-collinear: a small vertical angle α ~ 1° is introduced in order to generate horizontal 
fringes on the digital camera, where both pulses are temporally and spatially overlapped. 

Between the second beam-splitter and the digital camera, we insert the rotated coarse 2D 
diffraction grating and the tilted band-pass filter to generate the array of spectrally-resolved 
holograms. We fabricated the coarse diffraction grating by depositing an array of 10×10 μm 
reflective chrome squares, spaced by 50 μm, on the front surface of a glass substrate. This optic 
can be used in transmission or in reflection if dispersion from the substrate must be avoided. 
The interference band-pass filter has a nominal wavelength λn = 837 nm and a bandwidth 
(FWHM) of 3 nm, and we tilt it by an angle β ~ 20° to transmit the pulses centered at 800 nm. 
We typically generate an array of about 20 holograms, which are captured by a high-resolution 
(5-megapixel) CMOS camera. The wavelength corresponding to each interferogram is 
calibrated by measuring the local spectrum at that point using a fiber-coupled grating 
spectrometer. 

 
Fig. 3. (a) Mach-Zehnder interferometer used to implement our STRIPED FISH device, drawn in 
the x-z plane. (BS1,2): beam-splitters. (D, F, C): same as in Fig. 1. The optical paths of both arms 
are matched using the delay stage, and a small vertical angle is introduced between the signal and 
reference pulses so that horizontal fringes are obtained on the digital camera. (b) Typical 
experimental STRIPED FISH trace (2208×3000 pixels) obtained with a 5-megapixel CMOS 
camera. Because of the limited dynamic range of the digital camera, the central interferogram is 
saturated so we discarded the corresponding data, leaving over 20 digital holograms for the data 
analysis. 

 

Figure 3(b) shows a typical STRIPED FISH trace. The central interferogram, corresponding 
to the undiffracted order of the 2D grating, is much more intense than the other holograms. We 
believe this is simply due to the absence of A/R coatings on the 2D grating. Because of the 
limited dynamic range (10 bits) of our digital camera, we choose to saturate this region of the 
image and discard the data corresponding to that frequency in Eq. (2). 

We demonstrate our technique using ultrashort pulses from a mode-locked Ti:Sapphire 
oscillator. The pulses are centered at 800 nm and have approximately 30 nm of bandwidth 
(FWHM). Because of the high repetition rate (80 MHz) of the laser, our measurement 
averages over many pulses, but our STRIPED FISH device uses a single-shot geometry, and 
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no scanning occurs. So it proves the principle. With a repetition rate in the kHz range and 
below, single-shot measurements should be straightforward. 

We first show that our STRIPED FISH device is sensitive to the spectral phase of the 
signal pulse. We introduce some group delay in the signal pulse by delaying it with respect to 
the reference pulse. This modifies the absolute phase of the fringes of each digital hologram 
in the experimental STRIPED FISH trace. This fringe shift is recorded as a function of 
frequency, and as expected, a linear spectral phase is obtained [Fig. 4(a)]. Similarly, when we 
introduce some group-delay dispersion in the signal pulse using a dispersive window, a 
quadratic spectral phase is obtained [Fig. 4(b)]. 

 

 
Fig. 4. (a) Fringe shift in each digital hologram as a function of frequency, showing a linear phase 
due to group delay. Open circles: measurement; dotted line: linear fit. (b) Fringe shift in each 
digital hologram as a function of frequency, showing a quadratic phase due to group-delay 
dispersion. Open circles: measurement; dotted line: quadratic fit. 

 

 
 
Fig. 5. (a) x-t slice of the measured electric field E(x,y,t) of a pulse with spatial chirp. The 
vertical axis shows the electric field intensity |E(x,t)|2 and the color shows the instantaneous 
wavelength derived from the phase φ(x,t). The spatial gradient of color shows the spatial chirp 
along the x direction. (b) y-t slice of the same measured electric field. No spatial chirp is 
present along the y direction, as expected. 
 

We also show the reconstructed field of a pulse with horizontal spatial chirp. We 
introduce spatial chirp in the beam using a pair of gratings. Figure 5 shows two slices of the 
reconstructed electric field E(x,y,t); one slice is obtained at y = 0 [Fig. 5(a)], and the other at 
x = 0 [Fig 5(b)]. In these plots, the instantaneous wavelength is calculated from the derivative 
of the temporal phase. Any temporal gradient of the instantaneous wavelength corresponds to 
temporal chirp, and any spatial gradient is due to spatial chirp. Horizontal spatial chirp is 
clearly visible on Fig 5(a). 

In the aforementioned proof-of-principle experiments, the Ti:Sapphire oscillator pulse was 
used as the reference pulse, and a replica of that pulse was distorted in order to create an 
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interesting pulse for demonstration purposes [see Fig. 3(a)]. The reference pulse was therefore 
spatially smooth, and had an approximately flat spectral phase. However, in most cases, it 
should be possible to perform a full self-referenced measurement of the distorted signal pulse 
by spatially-filtering that pulse. The resulting pulse then has a well-defined (i.e., smooth) 
spatial profile, and its spectral intensity and phase may be readily characterized using a 
single-shot FROG device [17], so that it may be used as the reference pulse in the STRIPED 
FISH technique. Thus STRIPED FISH is essentially self-referencing. 

5. Conclusions 

We have demonstrated STRIPED FISH, a very simple, fast, and general method that can 
measure the complete three-dimensional spatio-temporal electric field of an ultrashort laser 
pulse on a single shot. It involves recording multiple holograms on a high-resolution digital 
camera, yielding the complete field E(x,y,ω) or E(x,y,t). The complexity of the measured 
pulses—the space-time-bandwidth product—is a fraction of the number of pixels on the digital 
camera and can approach 105. In the future, we hope that STRIPED FISH will allow multi-
dimensional measurements of the electric field of ultrashort pulses with high resolution in space 
and time in a variety of important ultrashort-pulse applications. 
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