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Spatial chirp in ultrafast optics
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Abstract

Spatial chirp is a common spatio-temporal effect, but its parameterization is currently unsatisfactorily vague. In this

paper, we propose and compare two definitions of spatial chirp, which we call ‘‘spatial dispersion’’ and ‘‘frequency gra-

dient’’. The appropriate definition to use depends on the application. For Gaussian beams and pulses, the relationship

between the two definitions is found to be analogous to that between the definitions of temporal chirp in the time and

frequency domains.
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A beam with ‘‘spatial chirp’’ has its different fre-

quency components separated in space transverse

to the propagation direction. It is a very common
and often undesirable spatio-temporal distortion

in ultrafast optics and can be introduced by many

routine operations in laser laboratories. For exam-

ple, a beam passing through an element with angu-

lar dispersion, such as a prism or a grating,

experiences angular dispersion; after additional

propagation, the frequency components naturally

separate in space, resulting in spatial chirp. A sec-
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ond prism or grating, aligned anti-parallel to gen-

erate negative group-delay dispersion [1], removes

the angular dispersion, but significant spatial chirp
remains (Fig. 1(a)). Although using the prism/grat-

ing pair in a double-pass arrangement can elimi-

nate spatial chirp in the output beam, small and

almost inevitable misalignments often allow some

residual spatial chirp to remain in the beam. Other

common practices in a laboratory, such as propa-

gating a beam through a tilted substrate (Fig.

1(b)), also introduce spatial chirp.
On other occasions, researchers deliberately

separate different frequency components spatially,

such as in Fourier-synthesis pulse shaping [2,3]. In

this technique, a lens (or curved mirror) is placed
ed.
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Fig. 1. Generation of spatial chirp in a: (a) prism pair, (b) tilted substrate and (c) f–f Fourier-synthesis pulse shaper.
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one focal length away from a grating (or prism) in

a telecentric configuration, mapping frequency to

position, that is, introducing spatial chirp, at its fo-

cal plane (Fig. 1(c)). The accuracy of pulse shaping

depends on the degree of spatial chirp at the focal

plane, on which extensive studies have been carried

out [2,4,5]. Other applications of spatial chirp in-

clude the suppression of longitudinal mode compe-
tition [6,7] in the laser design.

The 21st century has seen intensified interest in

the spatio-temporal analysis of ultrashort-pulse
beams. Numerous methods have been proposed

to measure spatio-temporal characteristics of an

ultrafast laser beam [8–15]. To study these spa-

tio-temporal effects, clear and unambiguous defini-

tions of the various coupling parameters are

undoubtedly required. In the past, discussions of

spatial chirp, one of the most common spatio-

temporal coupling effects, have been mostly
confined to specific devices [4,5,7,16–20], and its

definition has been somewhat arbitrary and vague

in the literature. In this paper, we attempt to



Fig. 2. Measuring spatial chirp using an imaging spectrometer.
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clarify the meaning of this term. Specifically, we

show that there are two different definitions of spa-

tial chirp, which we refer to as ‘‘spatial dispersion’’

and ‘‘frequency gradient.’’ Which definition to use

depends on the situation. For Gaussian beams and
pulses, we find the relationship between these two

parameters to be analogous to that between the

parameters describing temporal chirp in the time

and frequency domains.

We begin with the case where no spatial chirp is

present, and the amplitude of the electric field at

position x and frequency x (defined as frequency

offset from the center frequency of the beam) can
be written in the form:

Eðx;xÞ ¼ ExðxÞExðxÞ;
where the spatial amplitude Ex(x) and the spectral

amplitude Ex(x) are completely separate and

potentially arbitrary functions of one variable. 1

In the presence of spatial chirp (here we assume
that it exists in one transverse spatial dimension x

only), E(x, x) becomes an inseparable two-varia-

ble function, where the spatial and spectral depen-

dences are coupled. We can easily measure the

spatio-spectral intensity profile of the spatially

chirped beam by sending the beam into an imaging

spectrometer with a two-dimensional camera on its

output image plane, as depicted in Fig. 2. Fields
sampled at different points along the entrance slit

of the spectrometer are spectrally resolved onto

different rows of the camera image, resulting in a

trace of intensity in the x–x domain. With linear

spatial chirp, the spatio-spectral intensity profile

will appear tilted. Fig. 3(a) shows a typical x–x
1 An equivalent representation of a general spatio-temporal

ultrashort-pulse beam is the space–time Wigner function [21], a

four-dimensional real-valued distribution function, which car-

ries the same information about the ultrashort-pulse beam as

the complex spatio-temporal (or spectral) field expression. The

various two-dimensional marginals of the space–time Wigner

function are the expressions of pulse-beam intensity in these

domains. Although the space–time Wigner function is a

powerful tool in the study of ultrafast beams in space and

time, we choose not to use it in our analysis, because this work

only involves studying the beam intensity in space and

frequency. For that purpose, the simpler spatio-spectral field

expression is a more appropriate tool.

Fig. 3. Measured spatio-temporal intensity profile of an

experimental spatially chirped beam. The line of triangles

indicates the x0(x) function, which determines frequency

gradient, and the line of circles indicates the x0(x) function,

which determines spatial dispersion.
intensity plot of an experimental beam with spatial

chirp.

Obviously, the degree of spatial chirp can be

characterized by measuring the tilt of the x–x
trace. However, there is a subtlety in this meas-

urement, namely, that there are two intuitive,
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but different, ways of measuring the tilt of the

trace in the x–x plane. The first involves measur-

ing the center frequency, x0, of each spatial slice,

which yields a function x0(x). The slope of the

x0(x) function, t ” dx0/dx, is a natural measure
of spatial chirp, which we will call the frequency

gradient. The other means of parameterization in-

volves measuring the beam center position, x0, of

each frequency component, which yields the func-

tion, x0(x). Its slope f ” dx0/dx is also a valid

measure of spatial chirp, which we will call the

spatial dispersion. Both parameters characterize

the spatial chirp, and very importantly, they are
not trivial reciprocals of one another. In the ab-

sence of spatial chirp, both parameters are zero.

And as can be seen in Fig. 3, the lines of triangles

and circles do not overlap.

A few researchers have been aware of this sub-

tlety of spatial chirp parameterization. Ohmae

et al. [20] noted the difference between the x0(x)

and x0(x) curves in their analysis of a Martinez-
type multi-pass pulse stretcher, and their particular

ray-tracing calculation yields the x0(x) result.

However, there has been no previous work pub-

lished on the general relationship between the

two spatial chirp parameters, which is necessary

background for the increasingly important re-

search now occurring in many laboratories on spa-

tio-temporal distortions. We will devote the rest of
the paper to this issue and will draw an analogy

between spatial chirp and temporal chirp at the

end, which we believe will shed new light on their

physical implications.

First, we would like to point out that in most

cases spatial chirp is introduced through angular

dispersion; therefore, spatial dispersion is often

the more fundamental of the two definitions.
When a beam with angular dispersion b = dh0/dx
propagates a distance L, the induced change in

spatial dispersion is

Df ¼ Lb;

which is completely determined by the optical sys-

tem only. Frequency gradient, on the other hand,
is affected indirectly. As can be seen later, the

change of the frequency gradient depends not only

on the optical system, but on the parameters of the

input beam and pulse as well. It is in this sense that
spatial dispersion is a more fundamental parame-

ter of spatial chirp in its generation, manipulation,

and removal, although frequency gradient is often

more useful in the intended application of spatial

chirp. In short, both quantities are important.
The relationship between frequency gradient

and spatial dispersion is in general complicated in

that it depends on the spatial-mode profiles of all

the constituent frequency components, and the

shape of spectrum. A common assumption is to as-

sign all the frequency components the same spatial-

mode profile, which we will write as Ex(x). We will

also write the complex spectral amplitude of the
beam as Ex(x). Then the field expression at posi-

tion x and frequency x in the beam can be written

in terms of spatial dispersion f as:

E x;xð Þ ¼ ExðxÞEx x� fxð Þ: ð1Þ
We will focus on the simplest possible case, which

is a Gaussian spectrum and a Gaussian spatial
profile for all the frequency components. Namely,

ExðxÞ ¼ exp � x
Dx

� �2
� �

;

ExðxÞ ¼ exp � x
Dx

� �2
� �

;

ð2Þ

where Dx is the frequency bandwidth of the beam

(1/e amplitude half width); Dx is the beam width of
a particular frequency component.

The spatio-spectral field amplitude for a pulse

with spatial dispersion is then

E x;xð Þ ¼ E0 exp � x
Dx

� �2
� �

exp � x� fx
Dx

� �2
" #

:

ð3Þ
We may reorganize the two exponential functions

and write the field in terms of frequency gradient t.
The expression becomes

E x;xð Þ ¼ E0 exp � x

Dx0ð Þ2

" #
exp � x� tx

Dx0

� �2
� �

ð4Þ
where

t ¼ f

f2 þ Dx
Dx

� �2 is the frequency gradient; ð4aÞ
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Dx0 ¼ 1

ðDxÞ2
þ f2

Dxð Þ2

" #�ð1=2Þ

is the locally reduced frequency bandwidth

due to spatial chirp; available at any particular

locations in the beam; ð4bÞ

Dx0 ¼ 1

Dxð Þ2
� t

Dx

� �2

" #�ð1=2Þ

is the increased overall beam width due to

spatial chirp: ð4cÞ

Eq. (4a) describes the relationship between the fre-

quency gradient t and the spatial dispersion f.
Note that they are not reciprocals of each other.

In fact, they are asymptotically reciprocals only

when spatial dispersion f ” dx0/dx is much larger

than Dx/Dx. If spatial dispersion f is very small,

on the other extreme, the two parameters are actu-

ally proportional. For a given beam width Dx and
frequency bandwidth Dx, frequency gradient t
reaches its maximum achievable value 1

2
Dx
Dx

� �
when

f � dx0
dx ¼ Dx

Dx. Fig. 4 shows the relationship of fre-

quency gradient and spatial chirp with Dx = 1.0

mm and Dx = 0.094 rad/fs, the conditions for the

experimental trace in Fig. 3.
Fig. 4. Theoretical plot of frequency gradient vs. spatial

dispersion, with the same experimental conditions for the

measurement in Fig. 3.
The distinction between the two definitions of

spatial chirp is quite analogous to that between

the definitions of temporal chirp in time and fre-

quency domains. We can describe a linearly

chirped Gaussian pulse either in the time domain,

EðtÞ ¼ EðtÞj j exp �i/ðtÞ½ �

¼ E0 exp � t
Dt

� �2
� �

exp � i

2
/2t

2

� �
ð5Þ

or equivalently in the frequency domain,

~EðxÞ ¼ ~EðxÞ
		 		 exp �iuðxÞ½ �

¼ ~E0 exp � x
Dx

� �2
� �

exp � i

2
u2x

2

� �
: ð6Þ

The two expressions are a Fourier transform pair.

The physical significance of temporal chirp

parameters /2 and u2 can be viewed as such: In

the time domain, �/2 is the derivative of instanta-

neous (angular) frequency x0 ” �(d/(t)/dt) = �/2t

with respect to t. On the other hand, in the fre-
quency domain, u2 (often called group-delay dis-

persion) is the derivative of group delay

t0 ” (du(x)/dx0) = u2x with respect to x. Parame-

ters /2 = �dx0/dt and u2 = dt0/dx are two differ-

ent, but equivalent, parameters describing

temporal (spectral) chirp in the time/frequency do-

mains, just as parameters f = dx0/dx and t = dx0/

dx are the parameters describing spatio-temporal
chirp in the frequency/space domains. Indeed, the

relationship between /2 and u2 is:

u2 ¼
�/2

1
4
/2

2 þ 1

ðDtÞ2
; ð7Þ

which follows from the Fourier transform and is

remarkably similar to the relationship between f
and t (Eq. (4b)) for the case of spatial chirp.

The experimental process that introduces tem-
poral chirp determines whether /2 or u2 is the

more fundamental parameter for a given situation.

For example, propagation through a linear disper-

sive material will add u2 phase term to the electric

field in frequency domain. The field in the time do-

main, found by inverse Fourier transform, will

then show pulses that are temporally longer (or

shorter). On the other hand, self-phase modulation
adds a /2 phase term in the time domain. Fourier
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transforming to the frequency domain will then

yield a broader spectrum.

Likewise, the various occurrences of spatial

chirp require a consideration of one spatial-chirp

parameter or the other. For example, in pulse
shaping, frequency gradient determines the map-

ping of spatial modulation to spectral modula-

tion. In addition, previously, we showed that

single-shot frequency-resolved-optical-gating

(FROG) devices for measuring ultrashort laser

pulse intensity and phase, including the very sim-

ple device GRENOUILLE, also measure fre-

quency gradient [14]. However, other optical
devices, including pulse stretchers and compres-

sors, are best modeled using spatial dispersion.

From our definition, we can see that the two

parameters are related in a complicated way,

involving both the beam width and the frequency

bandwidth. Indeed, there is a maximum frequen-

cy-gradient value one can achieve with given

pulse and beam parameters. Knowing the rela-
tionship between these two parameters should

help achieve better control of experimental condi-

tions involving spatial chirp.

To conclude, we have proposed and compared

two definitions of spatial chirp, namely, spatial

dispersion and frequency gradient. We derived

the relationship between the two parameters,

and we find it analogous to that between the
two quadratic-phase parameters (/2 and u2) char-

acterizing temporal chirp in the time/frequency

domains.
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