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Abstract: We use an algorithmic technique called “multi-grid” to improve the speed of 
convergence of the cross-correlation frequency-resolved-optical-gating (XFROG) pulse-
retrieval algorithm for very complex pulses. The multi-grid approach uses a smaller trace (N/4 
× N/4) drawn from the original N × N trace for initial iterations, yielding poorer resolution 
and range, but proceeding ~16 times faster for such iterations. The pulse field rapidly 
retrieved from this smaller array then provides the initial guess for the larger, full array, 
significantly reducing the number of iterations required on the full array. We first find that, 
for simple pulses and their resulting simple traces, the original generalized-projections FROG 
and XFROG algorithms already converge in less time than is required to plot the retrieved 
pulse, so speed improvements for them appear irrelevant in general. Considering therefore 
only complex pulses and their resulting complex traces, we adapted the multi-grid algorithm 
to XFROG, the technique used for complex pulses whenever possible. We show that 
extending multi-grid to even smaller arrays is not helpful, but intermediate-size arrays of N/2 
× N/2 are, further reducing the number of iterations on the full array and further decreasing 
convergence time. We obtain a factor of ~7 improvement in speed for very complex pulses 
with time-bandwidth products of 50 to 90. This approach does not require modifications to 
the algorithm itself and so can be used in conjunction with essentially all FROG algorithms 
for improved speed. And it retains FROG’s ability to determine the pulse-shape stability in 
multi-shot measurements. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

OCIS codes: (320.7100) Ultrafast measurements; (100.5070) Phase retrieval. 

References and links 

1. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer 
Academic Publishers, Boston, 2002). 

2. K. W. Delong, C. L. Ladera, R. Trebino, B. Kohler, and K. R. Wilson, “Ultrashort-pulse measurement using
noninstantaneous nonlinearities: Raman effects in frequency-resolved optical gating,” Opt. Lett. 20(5), 486–488
(1995).

3. H. G. S. Linden and J. Kuhl, “XFROG: new method for amplitude and phase characterization of ultraweak 
ultrashort pulses,” Phys. Status Solidi, B Basic Res. 206(1), 119–124 (1998).

4. K. W. Delong, D. N. Fittinghoff, R. Trebino, B. Kohler, and K. Wilson, “Pulse retrieval in frequency-resolved 
optical gating based on the method of generalized projections,” Opt. Lett. 19(24), 2152–2154 (1994).

5. T. Bendory, P. Sidorenko, and Y. C. Eldar, “On the Uniqueness of FROG Methods,” IEEE Signal Process. Lett. 
24(5), 722–726 (2017).

6. D. N. Fittinghoff, K. W. DeLong, R. Trebino, and C. L. Ladera, “Noise sensitivity in frequency-resolved optical-
gating measurements of ultrashort pulses,” J. Opt. Soc. Am. B 12(10), 1955–1967 (1995).

7. L. Xu, E. Zeek, and R. Trebino, “Simulations of frequency-resolved optical gating for measuring very complex 
pulses,” J. Opt. Soc. Am. B 25(6), A70–A80 (2008).

8. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-
resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber 
continuum,” Opt. Lett. 27(13), 1174–1176 (2002).

9. M. Rhodes, G. Steinmeyer, J. Ratner, and R. Trebino, “Pulse-shape instabilities and their measurement,” Laser 
Photonics Rev. 7(4), 557–565 (2013).

10. M. Rhodes, Z. Guang, and R. Trebino, “Unstable and Multiple Pulsing Can Be Invisible to Ultrashort Pulse 
Measurement Techniques,” Appl. Sci. 7(1), 40 (2017).

Vol. 26, No. 3 | 5 Feb 2018 | OPTICS EXPRESS 2643 

#314660 https://doi.org/10.1364/OE.26.002643 
Journal © 2018 Received 29 Nov 2017; revised 27 Dec 2017; accepted 2 Jan 2018; published 24 Jan 2018 

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.26.002643&domain=pdf&date_stamp=2018-01-25


11. J. W. Nicholson, F. G. Omenetto, D. J. Funk, and A. J. Taylor, “Evolving FROGS: phase retrieval from 
frequency-resolved optical gating measurements by use of genetic algorithms,” Opt. Lett. 24(7), 490–492
(1999).

12. P. Sidorenko, O. Lahav, Z. Avnat, and O. Cohen, “Ptychographic reconstruction algorithm for frequency-
resolved optical gating: super-resolution and supreme robustness,” Optica 3(12), 1320–1330 (2016).

13. D. Spangenberg, E. Rohwer, M. H. Brügmann, and T. Feurer, “Ptychographic ultrafast pulse reconstruction,” 
Opt. Lett. 40(6), 1002–1005 (2015).

14. M. J. Stimson, D. J. Ulness, J. C. Kirkwood, G. S. Boutis, and A. C. Albrecht, “Noisy-light correlation functions 
by frequency resolved optical gating,” J. Opt. Soc. Am. B 15(2), 505–514 (1998).

15. P.-Y. Wu, H.-H. Lu, C.-Z. Weng, Y.-H. Chen, and S.-D. Yang, “Dispersion-corrected frequency-resolved optical 
gating,” Opt. Lett. 41(19), 4538–4541 (2016).

16. G. Stibenz and G. Steinmeyer, “Interferometric frequency-resolved optical gating,” Opt. Express 13(7), 2617–
2626 (2005). 

17. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, Boston, 1995). 
18. G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B 24(8), 

1771–1785 (2007). 
19. C. W. Siders, J. L. W. Siders, F. G. Omenetto, and A. J. Taylor, “Multipulse interferometric frequency-resolved 

optical gating,” IEEE J. Quantum Electron. 35(4), 432–440 (1999).

1. Introduction

The well-known ultrashort pulse measurement technique, frequency-resolved optical gating 
(FROG), operates in the time-frequency domain [1], utilizing a two-dimensional array of 
data, IFROG(ω,τ), acquired from any spectrally resolved nonlinear-optical gating arrangement. 
The measured “FROG trace” can be described by the following relation: 

2

( , ) ( , ) exp( ) ,FROG sigI E t i t dtω τ τ ω
∞

−∞
∝ − (1)

where Esig is the signal field generated in any instantaneous or even non-instantaneous 
nonlinear optical process [2] in which one pulse time- or frequency-gates another. In self-
referenced versions of FROG, Esig(t,τ) is a function of E(t) and a variably delayed replica of it, 
E(t-τ). If a known gate pulse is available, Esig(t,τ) becomes a function of the reference pulse 
and the unknown pulse in a variant called cross-correlation FROG (XFROG) [3]. 

FROG’s well-known generalized-projections (GP) algorithm [4] reliably and quickly 
retrieves the temporal intensity and phase of arbitrary pulses. It involves Fourier-transforming 
between the time (t) and frequency (ω) domains and applying the relevant constraint in the 
respective domain (the functional form of Esig or the measured trace), to retrieve the intensity 
and phase of the pulse from the FROG trace and to do so essentially uniquely [1, 5]. 

While the GP algorithm has proven quite effective in a wide range of cases [6, 7], retrieval 
can be quite slow for very complex pulses. For example, retrieving an extremely complex 
continuum pulse with a time-bandwidth product (TBP) of ~4000 from its 4096 × 4096 
XFROG trace required a few hours [8]. Of course, computers were considerably slower then 
(2001). Also, it is not clear what role the pulse train’s extremely unstable pulse shapes and the 
resulting discrepancies between measured and retrieved traces (a unique and useful feature of 
FROG to reveal pulse-shape instability [9, 10]) played in this particular case. Nevertheless, 
the algorithm could use a speed increase for complex pulses with such large traces. 

Since FROG’s introduction, several additional algorithmic methods have been introduced 
for it, for example, genetic [11] and ptychographic [12, 13] methods for various reasons, 
including improved speed. Also, additional algorithms and variations on GP have been 
developed for various versions of FROG [14–16]. However, to our knowledge, no algorithm 
yet combines the speed and reliability of the original GP algorithm, especially for complex 
pulses. 

Inspired by recent discussions of algorithm speed, we considered trying to speed up the 
GP algorithm for its most common application: simple pulses measured by second-harmonic-
generation (SHG) FROG. However, we quickly found that the original GP algorithm, coded 
in C + + on an inexpensive laptop, retrieves pulses from 32 × 32 traces (the optimal trace size 
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for such measurements) in ~0.05s, which is less time than that required to plot the resulting 
pulse. XFROG is even faster (0.02s). We conclude that there is not much to be gained by 
attempts to speed up the FROG algorithm for simple pulses, the goal having already been 
achieved by massive improvements in computer CPU speed over the past two-and-a-half 
decades (i.e., by doing nothing). If additional speed is desired, buying a faster computer 
and/or waiting a year or two for the next generation of processors seem the best strategies. 

On the other hand, with recent increases in applications of complex pulses, such as shaped 
pulses [17] and continuum [18], a faster retrieval algorithm for XFROG, the specific FROG 
technique used for such pulses—a complex pulse is best measured using a simple one, rather 
than a complex one—is actually needed. As a result, in this work, we attempt to reduce the 
retrieval time for large traces of complex pulses by applying to the standard GP XFROG 
algorithm a “multi-grid” approach, first introduced by Siders, et al., for a related FROG 
technique with complex traces, called MI-FROG [19]. Multi-grid involves using smaller 
arrays for initial iterations before using the entire data array. In FROG and XFROG, if the 
measured trace is N×N, the number of multiplications in GP scales as N2lnN, so reducing the 
size of the array is clearly beneficial. The multi-grid approach then uses the retrieved pulse 
from the smaller grid as the initial guess for the larger grid. The process can be repeated and 
concludes after reaching the original, largest, as shown in Fig. 1. 

Fig. 1. Multi-grid algorithm used in GP XFROG. The parameter, l, corresponds to the reduced 
size array. In this work, l = 0 corresponds to an N×N trace; l = 1 corresponds to N/2×N/2, and l 
= 2 corresponds to N/4×N/4. 

2. Multi-grid algorithm in GP FROG

It is straightforward to simultaneously reduce the trace delay and frequency ranges by a factor 
of 2. Simply use the center half of the trace in each dimension. But GP requires that the delay 
and frequency dimensions satisfy the discrete Fourier transform relation: 

1
N τ ν

δτ δν
= = Δ Δ (2)

where δν and δτ are the frequency and delay increments, respectively, and Δν and Δτ are the 
frequency and delay ranges, respectively. This is reasonable because a pulse with a temporal 
range of Δτ typically has spectral structure of size δν. And a pulse with a spectral range of Δν 
typically has temporal structure of size δτ. 

So obeying the discrete Fourier-transform relations between delay and frequency requires 
a corresponding increase in the trace increments by the same factor, yielding a smaller-range 
and coarser trace. This results in a significantly smaller, N/4×N/4, trace. It involves simply 
averaging every 2×2 subarray within the central region of the grid, yielding one number for 
every such 2×2 subarray. As a result, Siders and associates used (in reverse order) traces of 
sizes N×N, N/4×N/4, …, which worked very well for MI-FROG’s traces. 

Of course, trace structure will be lost in the process. And reducing the range of an 
XFROG trace—whose initial size has been correctly chosen—to smaller than N/4×N/4 can 
result in overly cropped traces. We have found that, typically, a properly chosen N×N trace 
(i.e., one with not too many zeros in its wings, that is, not overly large) can be reduced to 
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N/4×N/4, but no smaller, as shown in Fig. 2. Consequently, direct application of multi-grid to 
XFROG would yield only one smaller array, N/4×N/4. 

Fig. 2. For implementation of the GP algorithm, the FROG trace should be “an island in a sea 
of zeros.” However, due to the uncertainty principle, the trace cannot go to exactly zero on the 
perimeters. Here, the orange and yellow colors represent the regions where Isig(ω,τ) is greater 
than 10−4, and 10−3 of the maximum value of the trace, respectively. Here each column 
corresponds to the trace of a different pulse. Each row represents N×N, N/2×N/2, N/4×N/4, 
and N/8×N/8 XFROG traces for that column’s pulse that would be used for the multi-grid 
algorithm. Left to right: 1st column, N = 256 (TBPrms = 10), 3rd column N = 512 (TBPrms = 
30), and 5th column N = 1024 (TBPrms = 55). Notice the change in delay and frequency ranges 
in the smaller traces. The corresponding regions where data points are greater than 10−4 and 
10−3 of the maximum of trace are shown for all the traces on the adjacent column. Thus, N/4 × 
N/4 traces are generally acceptable, but N/8 × N/8 traces are too cropped and hence usually 
unacceptable. 

But using more than one trace-size reduction in multi-grid is desirable (as we will show), 
so we also extended the multi-grid method by using an additional intermediate-size array, 
N/2×N/2, here involving reducing the dimensions of the array by a factor of two in addition to 
four. As a result, the delay and frequency increments must increase, and the ranges must 
decrease, by √2. This is not as simple as generating the N/4×N/4 array, but it is still not 
difficult. We computed actual values by simple interpolation of neighboring points. 

We run the algorithm first on the coarsest grid, N/4×N/4, then N/2×N/2, and finally N×N. 
A flat-phase Gaussian pulse with τFWHM = 80fs is used as reference pulse for all the theoretical 
traces. We used a personal computer with Intel Core i7 3.40GHz processor, running 
MATLAB with the FROG algorithm kernel in C + + . We considered pulses with TBPs up to 
90. 

The time required for binning the 256 × 256, 512 × 512, and 1024 × 1024 arrays to two 
smaller grids was ~0.03, 0.05, and 0.06s, respectively—negligible compared to the iteration 
times. For all the retrievals, random complex numbers were used as the initial guesses for the 
N/4 array, and the result of that retrieval was then used as the initial guess for the larger array, 
etc., as required for multi-grid. For runs without noise, the algorithm for size N/2l was 
terminated when the difference between the two successive G errors (rms differences between 
the traces) reached a threshold, αl. The threshold values were found by fine-tuning their value 
on a predetermined coarse range based on the best performance of retrieval on a sample of 
pulses. For example, for N = 512, the algorithm on the 128 × 128 grid was set to terminate for 
α2 = 8 × 10−7 and for 256 × 256, α1 = 6 × 10−6. 
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Finally, we used large numbers of randomly chosen traces in order to produce statistically 
significant results. 

Fig. 3. Comparison of the standard GP XFROG algorithm (a), the Siders, et al., multi-grid GP 
XFROG algorithm (which uses only N/4 × N/4 and N × N traces) (b), and our approach using 
N/4 × N/4, N/2 × N/2, and N × N traces on a 1024×1024 XFROG trace for a pulse with TBPrms 
= 55. Time on the horizontal axis corresponds to real time. Note that our multi-grid GP 
approach is almost ten times faster than the standard GP approach for this pulse. The 
parameters kl indicate the number of iterations on the N/2l × N/2l array. In other words, k0 
corresponds to the full N × N array, k1 corresponds to the N/2 × N/2 array, and k2 corresponds 
to the coarsest N/4 × N/4 array. The same initial guess is used for the retrieval on N/4 × N/4 
traces in (b) and (c). The difference in convergence behaviors is due to the fact that many more 
iterations are required for a given value of l when fewer array sizes are used. For example, 
when the N/2 × N/2 array is not used, as in (b), more iterations are required on both the 
coarsest and finest arrays. Note that the time per iteration is the same for all approaches and 
depends only on the value of l. 

We find that the retrieved pulse in multi-grid GP is typically obtained using a larger 
number of iterations, but on much less time-costly smaller grids, which results in a much 
more overall time-efficient algorithm. Multi-grid always yielded faster convergence. And 
including the intermediate-size array, N/2×N/2, always resulted in the fastest convergence, as 
shown in Fig. 3. In other words, the pulse retrieval on the smaller-range coarse traces 
provides a good initial guess for the larger-range, finer trace and, as a result, reduces the 
number of required iterations on it. 

Fig. 4. (a) The temporal intensity and phase of the actual theoretical pulse are shown by orange 
and cyan colors, respectively. The temporal intensity and phase retrieved from the N/2 × N/2 
trace to be used for the initial guess for the full N × N (512×512) trace are represented by the 
dashed red and blue lines, respectively. Additional points have been interpolated for 
comparison with the full N × N array. (b) The retrieved electric field obtained from the full N × 
N trace with G error = 1.4 × 10−3. The temporal intensity and phase of the retrieved pulse 
(indistinguishable from the actual theoretical pulse, shown in (a)) are represented by red and 
blue curves, respectively. (c) The difference between the intensities (dark red) of the actual 
field and the field retrieved from the N/2 × N/2 trace and used as the initial guess for the 
retrieval on the fine-grid. (d) The difference between the phases (dark blue) of the actual field 
and the field retrieved from the N/2 × N/2 trace and used as the initial guess for the retrieval on 
the fine-grid. Note the significant discrepancies in (c) and (d), confirming the need for at least 
a few iterations on the full N × N trace. 

Vol. 26, No. 3 | 5 Feb 2018 | OPTICS EXPRESS 2647 



It should be noted that, at first glance, the pulse retrieved from the N/2 × N/2 trace seems 
close to the exact pulse, as shown in Fig. 4(a). But it lacks much of the pulse’s fine structure, 
and it occasionally adds structure, so it was important to retrieve the pulse from the complete 
N × N trace, as shown in Figs. 4(b)-(d). Fortunately, at most only a few iterations on the entire 
trace were required, so not much additional time was required for this additional accuracy. 

Figure 5 represents the retrieval results for theoretical pulses with rms TBPs of 10, 30, and 
55. Note the small numbers of required iterations on the full trace in multi-grid, denoted by
k0,N. Also note that kMG-GP, which corresponds to the equivalent number of iterations (in terms
of iteration per cost) on the fine grid is quite small compared to kGP, which represents the
average number of iterations in standard GP XFROG on the full array. We can see that for a
1024 × 1024 trace, the retrieval time is reduced by a factor of ~7. Recall that the time
required for the binning is negligible.

Fig. 5. Average number of iterations on a set of 50 pulses with (a) TBP = 20 and a 256 × 256 
trace, (b) TBP = 30 and a 512 × 512 trace, and (c) TBP = 55 and a 1024 × 1024 trace. kl 
corresponds to average number of iterations for the array of size reduced by the factor 2l. kMG-

GP and kGP correspond to equivalent number of iterations of kl’s in terms of iterations on the 
fine grid, and average number of iterations required in GP XFROG, respectively. 

To better simulate experimental data, we contaminated traces with 1% multiplicative plus 
1% additive noise. The results were very similar, as shown in Fig. 6. For TBP > 10, multi-grid 
remains far preferable, providing a factor of ~6 improvement for retrieval on a 1024 × 1024 
array, and ~7 for retrieval of TBP = 90, requiring a 2048 × 2048 trace. 

We also find that our multi-grid approach is as robust as the GP algorithm on which it is 
based, with all traces yielding convergence to the correct pulse on the first initial guess, 
without the need for a second attempt, even in the presence of noise. 

Also, recall that it has recently been shown that, in contrast to most other popular pulse-
measurement techniques, FROG and XFROG are excellent indicators of pulse-shape 
instability when a measurement averages over many pulses [9, 10]. This is because the 
complete measured FROG or XFROG trace vastly overdetermines the pulse, and the presence 
of different pulse shapes in the pulse train distorts the trace and so essentially always yields a 
trace that cannot correspond to a single pulse. As a result, the FROG algorithm, which can 
only yield a single pulse and so assumes that the trace is due to only one pulse, not the sum of 
many different ones, yields a pulse with a trace that does not agree with the measured trace. 
Because multi-grid generalized projections utilizes the entire FROG or XFROG trace in its 
final iterations, it retrieves the same pulse as the standard GP algorithm and so necessarily 
retains FROG’s ability to ascertain the pulse-shape stability of a train of pulses. Other 
algorithmic approaches that attempt to retrieve pulses from incomplete FROG or XFROG 
traces, which do not in the end use the entire trace, will not enjoy this important feature. 
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Fig. 6. The average retrieval times for sets of 50 pulses in the presence of noise. The 
improvement in speed is the same whether or not 1% additive and multiplicative noise is 
present. 

3. Conclusion

For simple pulses and their corresponding small traces, FROG’s and XFROG’s original 
generalized projections algorithm converges quickly and reliably (for XFROG, typically in 
0.02s—less than the time required to plot the resulting pulse). But complex pulses, such as 
continuum and shaped pulses, require a faster XFROG pulse-retrieval algorithm. We showed 
that Siders’ multi-grid XFROG algorithm, modified to also include an intermediate-size trace, 
significantly reduces the retrieval time of the existing generalized-projections algorithm. We 
also considered much more complex pulses than previously considered, and we observed a 
factor of ~7 speed improvement for complex pulses with TBPs of ~50 to ~90. This speed 
improvement factor is likely to increase for even larger traces. So multi-grid provides the 
most improvement where it is most needed. 

Finally, it is worth reiterating that implementation of multi-grid is very easy, as it does not 
require any modification of the FROG-algorithm kernel, and instead only to the routine that 
calls it. 
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