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We consider induced-grating autocorrelation (IGA) in a slowly responding medium and study three possible
geometries (two-beam coupling, three-beam induced grating, and self-diffraction) in two different limiting cases
(single-pulse experiments and many-pulse accumulated-grating experiments). We find that in five of these
six cases the IGA trace is given by the squared amplitude of the electric-field correlation function, thus yielding
information about the spectrum of the pulse. Theoretical expressions for the IGA trace are derived for both
linearly chirped and self-phase-modulated pulses. Experiments performed with self-phase-modulated pulses
are in excellent agreement with the theory. In this case we show how the measured IGA trace can be used
to determine both pulse duration and pulse bandwidth.
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tion are provided in the time domain in a single device

The measurement of the characteristics of an ultrashort
pulse is perhaps the most significant and immediate prob-
lem facing the researcher in possession of one. As a re-
sult this problem has received tremendous attention over
the past two decades. Early on it was recognized that
the only tool available with sufficient temporal resolu-
tion to yield any useful information was the pulse itself.
Of course the pulse cannot resolve itself, and using the
pulse to measure itself yields only the pulse autocorrela-
tion. Nevertheless, autocorrelation methods have been
the only methods available for many years, and as a re-
sult they have become commonplace.

Initial work concentrated on intensity autocorrelation,
and two-photon processes, such as two-photon fluores-
cence and second-harmonic generation (SHG), provided
good results.’> These two-photon methods and their rel-
atives, such as two-photon absorption,® continue to be the
standard methods used in ultrafast laboratories today.

Other nonlinear processes have been suggested and
used for intensity autocorrelation,*® but, with the real-
ization that the most common type of distortion in fem-
tosecond pulses is chirp, efforts in the past few years have
shifted to developing methods for measuring the phase
distortions common to ultrashort pulses. The pulse spec-
trum is not a bad indicator of the magnitude (but is bad
for the sign) of linear chirp when the spectrum is accom-
panied by some measure of the pulse length, such as the
intensity autocorrelation, but most researchers prefer to
perform all measurements in the time domain because the
required intensity autocorrelator is already an inherently
time-domain device. Fortunately both types of informa-
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by the method developed by Diels and co-workers,”10
interferometric SHG autocorrelation (ISHGA), which
involves performing SHG with a pulse that has prop-
agated through a Michelson interferometer. This tech-
nique simultaneously yields the intensity autocorrelation
and provides sufficient phase information to distinguish
among transform-limited pulses, linearly chirped pulses,
and pulses that have experienced simple self-phase modu-
lation. It has been used to measure pulses as short as
6 fs, and, by placing a piece of glass in one arm of the
Michelson interferometer, Diels and co-workers were able
to distinguish the sign of the chirp of a pulse!! as well as
its magnitude. In addition, algorithms have been pre-
sented for the determination of the full pulse intensity
and phase for simple pulses based on ISHGA in conjunc-
tion with one or two other experimental traces, such as
the second-harmonic spectrum or interferogram.!%13
Additional methods have recently been developed that
more directly provide phase information. Several tech-
niques directly determine the instantaneous frequency
versus time or its frequency-domain analog, the group
delay versus frequency.'*?? Chilla and Martinez?*25
demonstrated a technique for directly determining the
phase in the frequency domain and, using the easily
measured pulse spectrum, extracted the approximate full
pulse intensity and phase of a train of pulses. More
recently, Kane and Trebino?®?® showed that the pulse-
characterization problem can be made equivalent to the
well-known, solved problem of phase retrieval in two
dimensions. With this knowledge, they demonstrated
a class of techniques called frequency-resolved optical
gating, which rigorously yields the full pulse intensity
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and phase evolution. This class of methods has the
additional advantages of single-shot operation, simple
apparatus, automatic phase matching, UV-through-IR
wavelength range, high accuracy, and a robust retrieval
algorithm.?® Frequency-resolved optical gating can use
any instantaneous nonlinear-optical process, but three-
photon processes, such as the electronic Kerr effect, have
been shown to function best.

Three-photon processes were used previously for auto-
correlation measurements also.3% We call this class
of autocorrelation techniques induced-grating autocor-
relation (IGA). (They are also called four-wave-mixing
autocorrelation; for simplicity we exclude sum-generation
processes in this discussion.) IGA has by no means
been made obsolete by intensity-and-phase techniques.
Intensity-and-phase methods all require a nonlinear
medium with an instantaneous nonlinear response and as
a result have not been demonstrated for extremely weak
pulse trains such as those generated by mode-locked
diode lasers for potential communications applications.
IGA measurements, on the other hand, easily generate
measurable signal strengths for such low-power pulse
trains because they can take advantage of slow, and
hence strong, nonlinear effects. Pulse trains of ~1-fJ
pulses yield sufficient signal to generate a usable IGA
trace in photorefractive media. Also, while IGA does
not yield full intensity-and-phase information, it can
yield at least as much information as is available from
ISHGA.2%3 JGA with an instantaneously responding
medium (IGAFast) yields the (third-order) intensity au-
tocorrelation, which has the advantage over two-photon
autocorrelation methods of indicating pulse asymmetry.
IGA with a slowly responding medium (IGASlow), on
the other hand, yields the same phase information as in
ISHGA.3%-% Unlike with SHG, most materials exhibit
x® effects and are potential samples, and UV opera-
tion is straightforward. Automatically phase-matched or
nearly phase-matched beam geometries are readily avail-
able, simplifying alignment considerably and yielding
quite large signal strengths. Also, because frequency-
degenerate processes are the rule, group-velocity disper-
sion is significantly less of a problem than in SHG. In
addition, the touchy alignment of the Michelson inter-
ferometer required in ISHGA is not necessary in IGA
setups. Finally, whereas ISHGA has been achieved on
a single-shot basis by use of a clever arrangement,’*% a
single-shot IGA apparatus can be constructed in a more
straightforward manner.53

IGAFast has been demonstrated experimentally
with the phase-conjugate, polarization-gate, and self-
diffraction beam geometries.3™*® The theoretical
treatment of IGAFast is also well established: the
third-order intensity autocorrelation is a relatively
straightforward concept and has the advantage that it
can diagnose asymmetrical pulses. Numerous reports of
experimental demonstrations of IGASlow in a wide range
of samples (for example, dyes, photorefractive crystals,
and thin amorphous films) also exist.32-36:46-48,50-53.56
Theoretical investigation of IGASlow lags somewhat
behind experimental efforts, however. It was only re-
cently, for example, that commonly observed oscillations
in the wings of IGASlow traces found an explanation.®
Previous studies have untangled only some of the
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phase information available from this method.*>% Sev-
eral years ago IGASlow with stochastic pulses was
considered.?® A couple of years ago we gave a brief
description of IGASlow traces for a few specific types
of commonly encountered deterministic ultrashort pulse
but lacked the space to provide more than minimal
quantitative information.®® A full catalog of pulse types
and their IGASlow traces is not yet available. Unfor-
tunately IGA is complicated by the fact that, unlike
second-harmonic-generation autocorrelation (SHGA), it
permits several qualitatively different beam geometries
and regimes. For example, the signal beam in an IGA
experiment can either copropagate (and add coherently)
with an input beam or not. In addition, in IGASlow one
of the beams that forms the grating can also simulta-
neously probe it, or a separate beam can arrive later to
do the probing independently of the excitation beams.
There are slow media and very slow media (defined
below): thus the problem can be further divided into
single-pulse experiments, in which the only contribution
to the grating occurs on a single laser shot, and multiple-
pulse accumulated-grating experiments, in which the
grating accumulates over many shots. In the first case
the grating decay time is less than the time between
laser pulses, and in the second case the opposite is true.

In this paper we discuss in detail IGASlow in both
slowly and very slowly responding media. We consider
two possible two-beam geometries (self-diffraction and
two-beam coupling; see Fig. 1) and one three-beam ge-
ometry (e.g., phase conjugation; see Fig. 1) and perform
calculations for the cases that have not been consid-
ered previously. We review some of the previously per-
formed calculations for perspective. We find that, in all
but single-pulse self-diffraction, the experimental trace
can be adequately described by the same result, the
squared magnitude of the pulse spectrum (in the deter-
ministic limit). We then consider several specific types
of ultrashort pulse: transform-limited pulses, linearly
chirped pulses, and purely self-phase-modulated pulses.
We show IGASIlow traces for a range of values of the rele-
vant parameters and compare these traces with those ob-
tained from ISHGA. We find that (except in single-pulse
gelf-diffraction) IGASlow yields traces that are exactly the
magnitude-squared envelope of the high-frequency fringes
of the two-beam interferogram. We also find that IGA
yields essentially the magnitude-squared envelope of the
high-frequency fringes of the trace obtained in ISHGA
traces. The lack of high-frequency fringes in IGASlow
is a significant advantage because many fewer data need
to be taken. This permits, for example, straightforward
single-shot operation, in which delay is transformed into a
position on a multielement detector, which typically lacks
sufficient elements to fully resolve an interferogram or
ISHGA trace.

In the remainder of this paper we discuss only
IGASlow. Consequently, we drop the Slow suffix except
when the two versions of IGA must be compared.

2. GENERAL DESGRIPTION OF
INDUCED-GRATING AUTOCORRELATION

The basic idea behind IGA is the splitting of a pulse and
the interference in some medium of the resulting two ex-
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Fig. 1. Various beam geometries for performing IGA. Both
three-beam geometries are essentially equivalent for this

purpose.

citation pulses. The resulting interference fringes may
then induce a modulation of the medium absorption co-
efficient or refractive index, i.e., a grating. This mod-
ulation is then probed by a third pulse or by one of the
excitation pulses, and the diffracted light is detected. An
IGA trace is produced by varying the delay between the
two excitation pulses and plotting the diffracted inten-
sity versus the relative delay. Because no interference
fringes are obtained in the medium when the excitation
pulses do not overlap in time, no grating can form, and no
light can be diffracted. As a result it is clear that some
properties of the pulse will be obtained in this manner.
The property obtained will generally not be the pulse
length, however, because, although it is necessary that
the excitation pulses overlap for a grating to form, it is
not sufficient. To understand this see Fig. 2, where we
have illustrated the case of a linearly chirped pulse that
has been split into two pulses, which then interfere in a
medium with some delay between them. Notice that, at
any point in time in the medium, unlike colors interfere.
As a result the interference fringes will not be station-
ary. If the medium responds instantaneously, then the
medium can follow these fringes no matter what their
phase velocity; a relatively high diffraction efficiency will
result. If the medium responds slowly, however, it will
not be able to follow the fringes, and the material grat-
ing will wash out. In this case no light will be diffracted.
Note also that if the delay between the excitation pulses
had been zero then like colors would have interfered, and
a strong grating would have resulted. Thus IGASlow
will give information on phase distortions, such as chirp,
in the pulse, but IGAFast will not.

IGASlow may be performed in a variety of media, based
on a variety of effects, ranging from thermally induced
refractive-index changes, to the optical Kerr effect, to the
photorefractive effect, provided that the decay time of the
grating in the medium is long compared with the pulse
length to be measured and with any delays used in the
interaction. We assume that the rise time is instanta-
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neous, although many of the results of this paper hold
even when this is not the case.

Figure 1illustrates three types of beam geometry avail-
able for IGA experiments. The first is two-beam cou-
pling, in which a pulse is split into two and interfered
in the IGA medium. Here, the probe beam is the same
as an excitation beam, and the signal beam copropagates
and adds coherently with the other excitation beam. In
two-beam coupling the power transfer between the two
beams is measured. Another two-beam geometry is self-
diffraction. Here the probe beam is also one of the exci-
tation beams, but the signal beam propagates in a unique
direction. Self-diffraction is not phase-matched, but if
the angle between the beams is small then phase mis-
match can be neglected. Three-beam geometries, such as
phase-conjugation and all-forward-propagating arrange-
ments, involve the probe’s arriving separately and later,
to probe the grating well after the excitation pulses but
before the grating decays. The difference between these
two three-beam geometries, shown in Fig. 1, is simply
that the probe-beam directions are backward or forward.
This difference does not enter into the analysis, so these
two geometries are henceforth considered equivalent in
every way.

We define 7, as the pulse length, 74 as the grating
decay time, and T as the time between pulses in the
train and distinguish between slow media and very slow
media. Slow media integrate the grating over one pulse
(p < 74 < T), probing the grating either during its
formation or immediately afterward, whereas very slow
media integrate the grating over many pulses (7, << T <<
74). This distinction is important in one case (self-
diffraction) but, interestingly, is inconsequential in all
other cases.

3. THEORY

Let E(t) be the electric field of the pulse to be measured.
Also, let 7 be the delay between the two replicas of the
pulse that interfere in the medium. We assume that
the dephasing time of the medium is much less than the
other time scales in the problem, so that we may neglect
coherence effects in the medium. We also assume that
the rise time of the grating is fast compared with the

blue red

Chirped
input pulses

red

blue

Fig. 2. Why pulses can overlap in a slowly responding medium
and not yield a grating. If a chirped pulse is split and recom-
bined in the medium with nonzero relative delay, then unlike
colors overlap at all times. The fringe pattern sweeps through
the medium, washing out the grating, which is the time integral
of the fringes throughout the pulse. Thus IGASlow yields phase
information.
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pulse length and that the decay time of the grating is long
compared with the pulse length and all delays between
pulses. The grating amplitude is then given by

t
A, m) f E@E*(t' + 7)d¢t’. )
The diffracted field is given by

Ediff(t: 'T) o< A(t’ T)Epr(t) > (2)

where the probe field E,.(¢) can be E(f) (as in self-
diffraction), E(¢ + 7) (as in two-beam coupling), or another
field (as in three-beam geometries).

We show that, for single-pulse two-beam coupling,
single-pulse three-beam coupling, and multipulse ex-
periments in all geometries, the detected signal is pro-
portional to the squared magnitude of the electric-field
autocorrelation function k(7), defined by

k(r) = fm E@)E* (¢ + rde'. )

We note that, in the limit as ¢ — o, the grating amplitude
A(¢, 7) is proportional to k(7).

A. Three-Beam Geometries

We begin by considering three-beam arrangements in
which the probe pulse arrives at the sample many pulse
lengths after the two excitation pulses. In addition the
diffracted pulse propagates in a unique direction, so the
detected energy will be

+o0
Waa(r) o< [ \Banle, P @

Substitution for Egx(¢) yields

2

+00 +0oo
Wdet(T)OC[_w Ep,(t)_/_w E@E*@' + n)dt'| dt, (5)

where we have taken advantage of the tardiness of the
probe pulse to allow the upper limit of the ¢' integra-
tion to go to +». Rearranging and factoring out the ¢-
independent integral yields

2

+0c0
Waee(r) o< f E@E ¢ + rde

)

f_ B, () 2dt . (6)

Now, the ¢ integral is just the pulse energy of the probe
pulse, so it can be lumped into the proportionality con-
stant, yielding

Wt (7) o k(7). (7

This result is the squared magnitude of the Fourier trans-
form of the intensity spectrum.
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B. Two-Beam Coupling

In two-beam-coupling experiments the diffracted field co-
propagates with the other pulse, so the detected field
should be written as

Eut(t, 7) oc E(¢) + Egig(t, 7). (8

The detected energy is then

+o
Wialr) o< [ B + 2 RelE*(¢)Eantt, 7)
+ |Eqe (2, 7)IP}de . 9
In two-beam-coupling experiments one measures the
change in pulse energy. Consequently the first term in
the integrand must be subtracted out. Also, because we
operate in the weak-signal limit, |E (t)| >> |Eag (¢, 7)|, the

last term may be neglected. Substituting for Eqgs (¢, 7),
we have

Wet(7) o< 2 Re[ f ” E*®E® + 1)
t
X f E@E*@ + T)dt'dt] . (10)

The ¢ integration may be done by parts when it is ob-
served that the ¢ integral is the complex conjugate of the
antiderivative of the remainder of the integrand of the ¢
integral. We can then rewrite this integral as

f_w E*(OE( + 7) f " E@E*E + nards
2] e

+o t
- f EQE*¢t + 1) f E*(E({ + r)dt'de. (11)

= U f t E@E* (¢ + nd¢t’

But now the second term on the right-hand side of this
equation is just the complex conjugate of the left-hand
side. Combining these two terms on the left, we have

2 Re|: f " E*@®E(E + 7) f t EE* @ + T)dt’dt]

2
, (12)

f t E@E*@ + r)dt’

the left-hand side of which is precisely the desired quan-
tity. Thus we have

2

+o
Waet (1) o< I f_ E@"E*(t' + ndt'| , (13)

where we have substituted +o into the upper limit of the
integral. This, remarkably, is exactly the same result as
in the three-beam case!
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C. Self-Diffraction

In self-diffraction the diffracted beam propagates in a
unique direction, but one of the excitation beams also acts
as the probe beam, E,.(t) = E(¢), so that the grating is
being probed as it is created. Thus we have

2

+oo t
Waal) | [ B [ BOE @+ nava| , e

which cannot be simplified further. Since we are in-
terested in measuring the electric-field autocorrelation
function, the single-shot self-diffraction geometry is not
suitable for our purpose, and it will not be discussed fur-
ther in this paper.

D. Multiple-Pulse Experiments

For the case of very slow media, for which the pulse
repetition time 7' is much less than the grating decay
time 74 (i.e., T << 73), the grating builds up over many
pulses. Assuming that the pulse repetition time is much
greater than the pulse width 7, (i.e., 7, << T') and that the
grating decay is described by an exponential, the grating
amplitude is given by

t
A(¢, 7) o< Eyt"Ey* (¢ + 7)dt'
c JT e ! Rl
+ > exp - E;(t\E;*(' + r)dt, (15)
j=1 djJ-=

where E;(t) represents the jth previous pulse. Since the
current pulse Ey(¢) is only a small part of this sum, we
may neglect its contribution compared with that of the
approximately 74/7T other pulses, obtaining

oo 0y +00
Az, 7) o< Z exp(—%) f_m E;)E;*(t' + r)dt'. (16)

Jj=0

When we assume that the pulse train contains identical
pulses, this becomes

Az, 7) o< k(1) i exp(— jT) : amn

=0 Td

Defining N = 74/T as the number of pulses during one
decay time, we find that

1

1- exp(——ll\?)

where the final expression is valid for large N. Thus the
effect of multiple pulses is simply to multiply the grating
strength by N. It is important to realize that this result
is true for all geometries, including self-diffraction.

In the three-beam geometry the detector signal is pro-
portional to |A()|? and hence to N2. This is also true for
self-diffraction. For the case of two-beam coupling, how-
ever, the detected field is Eget < E(#) + A(D)E( + 7). In
this case the detected signal intensity will be proportional
to N instead of to N2. For most experiments only the
shape of the IGA signal is important, and this proportion-
ality constant does not matter. There may be, however,
some experimental situations in which distinguishing be-
tween N and N2 will yield interesting information.

A(t, 7) o< k(1) =~ Nk(r), (18)
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4. INDUCED-GRATING
AUTOCORRELATION TRACES FOR
SPECIFIC PULSE TYPES

In Section 3 it was shown that IGA traces are propor-
tional to |k(7)|2. In this section we calculate k(r) for
three types of pulse: Fourier-transform-limited pulses,
linearly chirped pulses, and pulses that have experienced
self-phase modulation (but no group-velocity dispersion).
We take the pulse intensity envelope to be Gaussian for
all cases, which reasonably approximates many ultrashort
pulse shapes. It is proved that phase variations within
the pulse have a strong effect on the correlation function
and thus on the IGA trace.

A. Chirped Pulses
Consider first a linearly chirped Gaussian-intensity pulse:

E(t) = Ay exp[—iwgt — 2(In 2)(¢%/7,% + iat?)], (19)

where 7, is the FWHM of the pulse intensity, « is the
chirp parameter, and the instantaneous frequency is
given by w = wp + 4(In 2)at. By direct integration A(7)
is found to be

12
B(7) = Ag? %’(ﬁ) exp[—(In 2)(1 + a27,*)(r2/7,2)]
X exp(—iwgT). (20)

The IGA trace will be proportional to |k(7)|2, which is a
Gaussian with a FWHM Ar = ,/27,/(1 + a?7,*)V2. The
intensity spectrum of the pulse can be found by computing
the transform of 2(r). The FWHM of this frequency spec-
trum, Af, satisfies the relation AfAt = 2+/2(ln 2)/7 =
0.62405.

Introducing the normalized delay x = 7/7, and normal-
izing the correlation function so that £(0) = 1, we have

[B(x)|? = exp[—2(In 2)x%*(1 + a?7,%)]. (21)

Figure 3 shows IGA traces for linearly chirped pulses as
the chirp parameter is varied from a7,? = 0 (transform

1.0
09}
0.8 -
0.7+
0.6
05}
0.471
03r
0.2}
0.1}
0.0

IGA Trace

-2 -i 0 1 2
Delay in Pulse Lengths

Fig. 3. IGA traces [lk(x)|?] for linearly chirped pulses. The
chirp parameters used were m-pz = 0 (transform limited),
atp? =1, arp? = 8, and @72 = 10. Note that the IGA trace
becomes narrower as the chirp parameter increases (for a given
pulse width).
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limited) to a7, = 10 (heavily chirped). The narrowing
of the trace is clearly apparent. Since an SHG auto-
correlation trace will be identical to one for the @ = 0 case,
the combination of SHG and IGA can provide an accu-
rate measurement of both the pulse length and the chirp
parameter ar,’.

B. Self-Phase-Modulated Pulses

We now consider what happens when a Gaussian pulse
with no chirp passes through a nondispersive, nonlinear
medium of length z. In the simple theory of self-phase
modulation (SPM),57 the intensity of the pulse retains its
Gaussian time dependence, but the pulse acquires a time-
dependent phase shift of

$(t) = worpQ exp[—4(In 2)(t*/7,%)], (22)
where Q is the spectral broadening parameter given by

2rwox® A%z
kocsz

Q= (23)

Thus the electric field may be written as

E(t) = Ag exp[ —2(In 2)(t%/7,%)
— i{wot + woT,@ exp[—4(n )%/, . (24)

Substituting into the expression for 2(), we obtain

k(x) = 2(1“ 2) f du exp{-2(In 2 — iwer,Q

x exp[—4(In 2)u?Tlexp{—2(In 2)(u + x)* — iweT,Q
x exp[—4(In 2)@ + x)%T}, (25)

where we have introduced the normalized time u = ¢/7,
and the normalized delay x = 7/7, and have normalized
the correlation function so that k2(0) = 1.

We may now examine the significance of the SPM
strength, wo7,Q, by computing the autocorrelation func-
tion k(x) and numerically evaluating its Fourier trans-
form to get the spectrum. We find that, when the SPM
strength is above 5, the frequency bandwidth is approx-
imately Af = 0.45w¢®. Thus, with this simple result,
the SPM strength wo7,Q together with the pulse width
7p provides a direct measurement of the spectral broad-
ening produced by the magnitude of the SPM. We show
below that the IGA trace alone in fact yields both the SPM
magnitude and the pulse length.

Figure 4 shows the computed IGA trace obtained from
|(x)|? for self-phase-modulated pulses having four differ-
ent values of the SPM strengths wo7,Q. As the SPM
strength increases, the central peak narrows in the same
manner as for increasing chirp. In addition the wings
develop sidelobes that are a clear signature of SPM. A
quick estimate of the SPM strength can be obtained by
measurement of the location of the first zero (denoted ;)
and by use of the approximation that wer;@ =~ 1.9. A
fast way of obtaining the frequency bandwidth is to mea-
sure the width of the central peak of the IGA trace (de-
noted AT) and to use the approximation that ATAf =~
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0.93. This approximation is particularly good for SPM
strengths above 5.

We now show that the IGA trace alone in fact yields
both the SPM magnitude and the pulse length. Recall
that the IGA trace for a chirped pulse cannot simulta-
neously yield the pulse length and the chirp parameter.
This is because the IGA trace for a chirped Gaussian pulse
is always Gaussian, and a narrow trace can result from
a short pulse length or a large chirp parameter. This is
a fairly unique situation, and it is not the case for IGA
traces of self-phase modulated pulses. While it is still
the case that a narrow trace can result from a short pulse
length or a large bandwidth owing to a large amount of
SPM, the IGA trace shapes in the two cases are quite dif-
ferent. A narrow trace with no oscillations in the wings
indicates a short pulse, and a narrow trace with many os-
cillations in the wings indicates a long pulse that has ex-
perienced much SPM. Thus it is simply necessary to fit

aTQ =5

00k=""\

o 05 0.0 05 1.0

Delay

Q=10

o.o. - - /\

10 05 0.0 05 1.0
Delay

Q=15

0% 05 0.0 05 1.0

Delay

@TQ =20

0.0 PaVAY " VAV N
-1.0 -0.5 0.0 0.5 1.0

Delay

Fig. 4. Theoretical IGA traces |k(x)|> for SPM pulses. The
SPM strengths wo7p@ shown are 5, 10, 15, and 20. Note that
the IGA trace becomes narrower and develops oscillations in the
wings as the amount of SPM increases.
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the trace to Eq. (25) for exact results or to estimate these
parameters from the rules of thumb given above and be-
low for rough results. Of course, for small amounts of
SPM, no oscillations will occur in the IGA trace, yield-
ing a threshold for the utility of the method (that value
of SPM at which the spectrum starts to split; see below).
On the other hand, if the SPM can be varied, the relative
width of the trace can be used to measure the SPM much
more sensitively.

Because the IGA trace is equal to |k(x)I?, there is
value in studying the mathematical properties of the func-
tion k(x). For a symmetric pulse experiencing SPM and
whose intensity is an even function of time, the corre-
lation function k(x) will be even and real. Furthermore,
the value of k(x) for large x approaches zero from the posi-
tive side. For small values of the SPM strength w,7,@,
k(x) is positive definite for all x. At the SPM strength of
2.5705, k(x) becomes tangent to the x axis. Thus increas-
ing wo7pQ slightly above this value introduces two zeros
into the function. As the SPM strength is increased fur-
ther, additional pairs of zeros are introduced. Some criti-
cal values of wo7,@ at which a new pair of zeroes is added
are 8.7956, 15.0375, 21.2967, 27.5647, and 33.8463. For
large values of wo7,@, increasing wy7,@ by 27 rad intro-
duces an extra pair of zeros.

We can now understand the reason for the oscilla-
tory wings. The self-phase modulation introduces a
time-dependent phase shift whose magnitude depends on
woTp,Q. Delaying one signal by an appropriate amount
can force the relative phase shifts either to add or to
cancel. The number of specific delays for which exact
cancellation is observed depends on the magnitude of
wo7p€. There is no simple expression for the location of
these zeros, and they can be obtained only by numerical
evaluation of the complicated integral given in Eq. (25).

C. Other Phase Distortions

Just as ISHGA is not a general diagnostic for phase,
IGA does not reveal all phase distortions present in
a pulse. Recall that the IGA trace is the magnitude-
squared Fourier transform of the pulse spectrum. Thus
pure frequency-domain phase distortions, such as the
well-known frequency-domain cubic phase [¢(@) = aw?],
in principle leave the pulse spectrum unchanged and so
will be undetectable from only the IGA trace. Additional
information (such as an autocorrelation or a frequency-
resolved-optical-grating trace) is then necessary to indi-
cate such distortions.

For the same reason phase distortions that wash out
any structure in the spectrum will wash out structure
in the IGA trace. For example, the IGA trace of a SPM
pulse has oscillatory structure in its wings, which is due to
the oscillatory structure in the pulse spectrum. If some
other phase distortion causes this spectral structure to
wash out, then the oscillatory wings of the IGA trace for
this pulse will also wash out. Thus, when SPM is also
accompanied by group-velocity dispersion, the resulting
pulse is essentially linearly chirped, and we have seen
that such a pulse has no oscillatory structure in its IGA
trace.®® The same is also true for the envelope of the
high-frequency fringes of the ISHGA trace, which is re-
lated to the IGA trace.
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5. COMPARISON WITH EXPERIMENTS

The experimental apparatus is shown in Fig. 5. A cw
harmonically mode-locked Nd:YAG laser generated a
100-MHz train of nominal 50-ps duration pulses at
1.064 um. In the IGA experiments the optical pulses
were split in a modified Michelson interferometer, with
one arm of fixed optical delay and the other delayed by
a stepper-motor—retroreflector combination. The two
beams were focused into the photorefractive medium by a
pair of 15-cm focal-length lenses at an intersection angle
of 26 = 40°, which resulted in a grating period of 1.5 um.
The resultant beam diameter in the photorefractive
medium was approximately 100 um. One beam, des-
ignated the pump beam, was chopped, and the transfer
of modulation was detected in the probe beam with a sili-
con p-i-n photodiode and a lock-in amplifier. This is a
standard photorefractive beam-coupling geometry except
for the variable optical delay at one of the interferometer
arms. The IGA response was determined by measure-
ment of the lock-in amplifier output as a function of the
delay between the pump and the probe beams.

Our goal was to check the detailed prediction of
the theory using self-phase-modulated pulses. To pro-
duce well-defined self-phase-modulated pulses, the light
was propagated through a 24-m length of polarization-
maintaining silica fiber with an effective core area of
5 X 1077 ecm?. For this length of fiber and the 1.06-um
wavelength, group-velocity dispersion was negligible.
The SPM strength w¢7,Q was varied by variation of
the average power of the pulses.

In these experiments we used classic photorefractive
media, the ferroelectric oxides KNbO; and BaTiOz;. At
1.06 pum these crystals provided a unique measurement
capability. Since this wavelength is in the transparency
region of the crystal, a standard SHGA pulsewidth mea-
surement may be done at the same time as the IGA
measurement. By placing the silicon photodetector at
the bisector of the pump and the probe beams, we were
able to perform a noncollinear background-free SHGA
measurement. The crystal orientation was optimized for
maximum photorefractive beam coupling and was there-
fore not phase matched for SHG. Despite this fact, the
input beams were intense enough to generate a visible
(green, 532 nm) SHG signal and to yield an intensity au-
tocorrelation easily. Thus with a single crystal one can
simultaneously measure IGA and SHGA traces and ob-
tain information on both the bandwidth and the pulse
width of an ultrashort optical pulse in the time domain.

A typical experimental result of using SHGA to mea-
sure the pulse width is shown in Fig. 6. The smooth
curve is a Gaussian curve that fits the data shown by

Photorefractive
crystal

Harmonically /— ‘hamonic
T R = b
3 laser -
“~
Detectors
7
+
diffracted
Variable delay signal

Fig. 5. Experimental apparatus, a standard photorefractive-
beam-coupling arrangement, but with SHG possible
simultaneously.
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Fig. 6. Simultaneous SHGA measurement made with the same

apparatus and crystal as in photorefractive-beam-coupling IGA
measurements.

the noisy curve. The fit is extraordinarily good, even in
the far wings of the pulse. This justifies the assumption
made in the theoretical derivation that the pulses have
a Gaussian-intensity envelope. From this fit the pulse
length was determined to be 53 ps.

Some typical IGA traces are shown in Fig. 7. The
traces shown are for powers of 0.25, 0.5, and 1.0 W. Also
shown in the same figure are smooth curves computed
from Eq. (25) for the values of wo7,Q indicated. We note
that the measured values of wo7,@ were proportional to
the power, as expected. The agreement observed in the
three traces shown was typical for all the data taken in
these experiments. Although these traces were obtained
with KNbOg, similar results were obtained with BaTiOs.
The excellent agreement in these traces indicates the util-
ity of IGA for pulse measurement, in agreement with in-
dependent SHGA measurements.

We also performed detailed fits to these traces to deter-
mine the pulse length, 7,. In all experiments performed
to date, the value of 7, obtained was within 15% of the
value measured by SHGA. This demonstrates that it is
indeed possible to measure the SPM magnitude and the
pulse length from the IGA trace.

6. DISCUSSION AND CONCLUSIONS

In this paper we have derived expressions for the IGA
trace observed in two- and three-beam geometries for
single-pulse experiments and in all geometries in many-
pulse accumulated-grating experiments. In all these
cases the IGA trace is the squared magnitude of the
electric-field autocorrelation function. The remaining
case (single-pulse self-diffraction) yields a more compli-
cated expression that is not suitable for our purposes.
Since the electric-field autocorrelation function is the
Fourier transform of the spectrum, simultaneous mea-
surement of the intensity autocorrelation function (for
example, by SHGA) and the field autocorrelation function
(by IGA) provides an easy approach for determining both
pulse duration and pulse bandwidth entirely in the time
domain.

To validate the theoretical expressions, we have con-
sidered in detail the case of self-phase-modulated pulses.
As is shown above, the electric-field autocorrelation
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function is complicated, involving multiple zeros sym-
metrically placed around a central peak. The final ex-
pression for the IGA trace can be evaluated only by
numerical integration. This theoretical expression was
derived with the assumption that the intensity of the
pulse has a Gaussian time dependence.
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Fig. 7. Typical experimental IGA traces for powers of (a)
025 W, (b) 0.5 W, and (c) 1.0 W. As power into the fiber
increases, the magnitude of the SPM increases, and the IGA
trace narrows and contains more oscillations in the wings. Also
shown is the fit to the data from Egq. (25).
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As predicted by the theory, the value of wo7,Q mea-
sured by IGA was proportional to the average power.
More impressive was the detailed agreement between the-
ory and experiment on both the location of the zeros and
the relative heights of the sidelobes in the IGA traces.
We believe that this was extraordinary, given that the
only fitting parameters were the height and the center of
the main peak, the pulse length, and the SPM parameter
woTp Q.

We also demonstrated that the IGA measurement can
be used to obtain both the pulse width and the spectral
broadening that is due to SPM in a single measurement.
Although this is not possible in general (linear chirp is
an important counterexample), if a model is available
for the pulse some pulse-length information is generally
available in the IGA trace.

In this paper we have been interested in confirming
that the theoretical expressions for the IGA traces are
correct, and we have verified this to be the case. We
used an optical fiber to generate well-defined self-phase-
modulated pulses. In the future, however, we will ex-
plore the use of the IGA measurements to characterize
the nonlinear properties of new fibers.
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