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We study multi-shot intensity-and-phase measurements of unstable trains of ultrashort pulses using two-
dimensional spectral shearing interferometry (2DSI). We find that, like other interferometric ultrashort-laser
pulse-measurement methods, it measures only the coherent artifact and so yields effectively only a lower bound
to the pulse length. We also attempt to identify warning signs of pulse-shape instability in 2DSI and find that it
responds to instability with reduced fringe visibility, although this effect is very small when using the small spec-
tral shears appropriate for large temporal ranges. We conclude that 2DSI should be used with caution and large-

shear measurements or alternative techniques should be used to verify the stability of the pulse train.
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1. INTRODUCTION

It is fundamentally impossible for any multi-shot measurement
of an unstable quantity to yield a truly accurate result. For an
unstable quantity, the multi-shot measurement involves contri-
butions from an ensemble of different events. This is especially
problematic because this ensemble measurement may not yield
the average of the quantity being measured. In particular, any
technique for measuring ultrashort-laser pulse trains with pulse-
shape instabilities is doomed to fail, as a single pulse shape
can never correctly describe the (possibly large) collection of
different pulse shapes that contributed to the measurement.
Because single-shot measurements are difficult to perform with
most laser sources due to low pulse energies and long camera
integration times, it is important for a pulse-measurement
method to yield a reasonable average result. Further, it is very
important that the method indicate whether its measurement
averages over different events versus identical events. This prob-
lem is particularly important for trains of ultrashort pulses
because even typically stable lasers are sensitive to a variety of
fluctuations, including pump-laser power variations and, when
misaligned, acoustic vibrations, which occur on time scales
considerably shorter than typical camera integration times.
Although it is clear that averaged, multi-shot measurements
are problematic if the pulse train being measured is unstable,
this effect has not received the attention it deserves in ultrashort
pulse measurement. In 1969, Fisher and Fleck first identified
this issue in multi-shot intensity autocorrelation measurements,
describing and explaining the classic spike-and-pedestal-shaped
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trace that is typical of averaging over variably shaped complex
pulses [1]. In this case, the average pulse length is best indicated
by the width of the pedestal in the averaged autocorrelation
trace, not the width of the coherence spike. Unfortunately,
several decades later, misinterpretations of the coherence spike
in autocorrelation continue [2].

Autocorrelation’s problems are more deeply rooted, how-
ever, as the shape of the autocorrelation is not at all a robust
indicator of the pulse shape [3]. Interestingly, it has been shown
that the shape of a multi-shot autocorrelation is actually more
sensitive to the shape of a distribution of pulse widths than to
the profile of individual pulses [4]. In any case, autocorrelation
is now generally considered obsolete for many applications in
view of newer, more powerful, and informative methods that
yield the complete temporal intensity and phase of the pulse.
Unfortunately, with only one exception to our knowledge [5,6],
pulse-shape instability has not been considered in most of these
newer methods until very recently. Indeed, reliability metrics
and sometimes even error estimation have been absent from
ultrashort pulse measurements for far too long, and one con-
sequence is that the warning signs of pulse-shape instability
are unknown for most of these newer pulse-measurement
techniques.

Most of these more advanced pulse-measurement methods
also yield results that are very different from average pulses in
the presence of pulse-shape instability, and this poor perfor-
mance has only recently been identified for several of them.
In recent publications, the effects of pulse-shape instability
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on measurement results have been studied for several ultrashort
pulse-measurement techniques: frequency-resolved optical gat-
ing (FROG) [7,8], spectral interferometry for direct electric
field reconstruction (SPIDER) [9,10], and self-referenced spec-
tral interferometry (SRSI) using cross-polarized wave genera-
tion [11,12].

Techniques that measure only the stable or repeatable part
of a pulse train and do not reflect the variations are said to mea-
sure only the coherent artifact. In particular, interferometric
measurements that rely on fringes to retrieve pulse information
are especially susceptible to retrieving only a coherent artifact.
Because the interferometric measurement process ignores var-
iations, the averaged measurement yields a pulse that is quite
different from an average pulse. This is the case for both
SPIDER [13,14] and SRSI [15]. Phase variations cause fringes
to wash out, and the remaining averaged fringes (with reduced
visibility) represent only the stable component of the pulse
train. The unstable component information resides only in the
background. In effect, SPIDER does what it is supposed to
do: measure the average spectral phase, which, in the presence
of fluctuations, is significantly less complex than that of a single
pulse in the train and usually flat. But a flat spectral phase
corresponds to the shortest pulse for a given spectrum—the
definition of the coherent artifact. For SPIDER, the resulting
increased background is generally the only indicator of insta-
bility, but other benign causes of background, such as slight
device misalignment, also exist, and it is difficult to separate
them out. Since there is no independent “stability meter” for
pulse shapes in trains of ultrashort laser pulses, it is very im-
portant that there be a reliable way to distinguish a train of
stable, short, and simple pulses from a train of unstable, long,
and complex pulses. While SRSI retrieves a coherent artifact, it
is much more able to distinguish unstable pulse trains from
stable ones. SRSI has an internal cross-check that is violated
for unstable pulse trains: the spectrum of the pulse generated
in it via cross-polarized wave generation should be the same in
the measurement as when calculated from the retrieved pulse
[15,16]. So it yields an indication of pulse-train instability
when its cross-check is used.

Fortunately, a FROG measurement, whose two-dimensional
traces massively over-determine the pulse, yields a noticeably
high rms error between measured and retrieved traces (known
as the FROG error) when confronted with an unstable pulse
train. Since comparing measured and retrieved FROG traces
is standard practice, this is an excellent indicator of instability.
Different versions of FROG perform differently in regard to
retrieving the average structure in the pulse intensity and spec-
trum, but FROG's retrieved pulses generally reasonably reflect
the approximately correct full width at half-maximum pulse
length, even in the presence of significant instability [13,14].
As a result, FROG is currently the only known intensity-
and-phase measurement method that does not measure only a
coherent artifact.

Here, we consider these issues for the intensity-and-phase
measurement technique, two-dimensional spectral shearing
interferometry (2DSI) [17,18]. We also consider whether
it provides an indication of the stability of the pulse train or
otherwise indicates the reliability of its measurement. In order
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to do this, we study its response to trains of unstable pulses.
Ideally, we will identify a method of distinguishing between
stable and unstable pulse trains in measured 2DSI traces. This
is of particular interest because 2DSI is quite closely related to
SPIDER, which has already been shown to measure only the
coherent artifact and so cannot distinguish simple, short, and
stable pulse trains from complicated, long, and unstable ones

[13,14].

2. BACKGROUND

2DSI and SPIDER are both based on interfering pulse replicas
with slightly different center frequencies to determine the
spectral phase of pulses. The difference in center frequency be-
tween the pulse replicas is referred to as the shear. Spectrally
shearing one of the replicas means that the difference in spectral
phase between frequencies separated by the shear affects the
signal, allowing the phase to be reconstructed. In SPIDER,
the pulse replicas have a relative delay, creating spectral fringes
that are modulated by the difference in phase [see Fig. 1(a)].
The ideal SPIDER signal, in terms of the spectrum S(w),
spectral phase @(), frequency shear Q, and delay 7, is
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Fig. 1. Basic schematic of (a) SPIDER and (b) 2DSI. The delay
lines necessary to maintain the correct relative delay between chirped
and nonchirped pulses are omitted for simplicity. We show a dispersive
medium being used to generate chirped pulses, but a prism or grating
and a mirror may be used instead. Pulse replicas interact in a sum-
frequency-generation crystal and are measured by a spectrometer after
a filter removes the fundamental light. In a SPIDER measurement,
the relative delay between pulse replicas generates spectral fringes
which are modulated by the local group delay. In a 2DSI measure-
ment, scanning the delay between chirped pulse replicas creates fringes
in the delay direction which are similarly modulated by the local
group delay.
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Sspiper (@) = S(w) + S(w - Q)
+2/S(0)S(w-Q)coslw T + p(w) - p(w - Q)].
(1)

To create this signal, two pulse replicas interact in a non-
linear crystal with different portions of a significantly chirped
pulse. The difference in frequency between these portions cre-
ates the spectral shear. Sum-frequency generation is the typical
nonlinear interaction, but difference-frequency generation works
equally well and may be preferable for some wavelengths.

2DSI differs from SPIDER in that it uses pulse replicas that
overlap exactly in time but have a small relative phase offset in
addition to the frequency shear [see Fig. 1(b)]. This is accom-
plished by allowing a single pulse replica to interact with differ-
ent portions of two significantly chirped pulses. The delay
between the chirped pulses sets the spectral shear. A phase offset
between the resulting higher-frequency pulse replicas is created
by varying the delay between the quasi-CW beams very slightly.
Scanning the phase offset through several electric field cycles
and recording the resulting spectrum at each delay produces
a two-dimensional plot with several visible fringes in the delay
direction. An expression for the ideal 2DSI signal is

Sopsi(@, 7)) =S(@) +S(w-LQ)

42/ S(w)S(0w-Q)cos|wt, + () -p(w-Q)],
()

where 7, is the phase offset. As in SPIDER, one can make the
approximation that the phase difference in the cosine term is
approximately the group delay (the derivative of the phase)
times the shear or

Sopsi(@, 7o) ® S(w) + S(w - Q)

+2y/S(@)S(@ - Q) cos[wry, + 1,(0)Q],  (3)

where 7,(w) is the group delay. The fringe at each frequency
will be offset according to the group delay at that frequency.
Consequently, the group delay can be obtained by Fourier
transforming the signal along the phase/delay direction and tak-
ing the phase of either AC sideband. The group delay can then
be integrated to determine the spectral phase as in SPIDER.

We have mentioned that the effect of pulse-shape instability
on a SPIDER measurement is to reduce the fringe visibility.
This occurs due to variations in the group delay. The group-
delay term in Eq. (3) controls the offset of the sinusoidal fringe
pattern at each frequency. If the group delay changes, the
fringes move. Thus, averaging over many pulses with different
group delays means that the fringes begin to wash out, resulting
in lower peaks and higher troughs. We will refer to “fringe vis-
ibility” in this paper, numerically defined as one minus the ratio
of the highest trough (or background) to the highest fringe
peak. A measurement with no background, whose troughs have
a peak value of zero, has 100% fringe visibility.

In the typical equations for SPIDER and 2DSI above, the
stretched pulses used in the measurement are assumed to be
essentially continuous-wave beams of the desired frequency.
This assumption is reasonable for measuring short pulses with
fairly flat phases. In the general case, however, considering

sum-frequency generation with stretched pulses instead of
CW beams significantly complicates the mathematics involved.
These effects may very well be important, especially when con-
sidering averaging over many different pulses. The simplest cor-
rection to the above equations is to consider the impact of
a difference in phase between different colors in the pulse.
Generally speaking, the spectral phase is not flat and any
two frequencies will have a nonzero phase difference. When
the pulse is stretched, these two colors will retain their original
phase difference in addition to any phase difference caused by
chirping. Even if we assume that the chirp is symmetrical, such
that it does not introduce any additional relative phase, the
pulse replicas will still inherit the relative spectral phase of
the two upconverting frequencies. If the spectral phase varies
from pulse to pulse, then the relative phase of the pulse replicas
will vary as well. The effect of these variations is to shift the
fringes from shot to shot. We expect this to further decrease
the fringe visibility in simulated unstable-train measurements,
in addition to the reduction in fringe visibility already expected
from group-delay variations as discussed in the previous

paragraph.

3. METHODS

The effects of pulse-shape variation on a measurement are
easily simulated. The first step is to generate semi-random pulse
trains with a stable component that is the same from pulse to
pulse and an unstable component that varies. For this study,
we use pulse trains that have been used to study other
pulse-measurement methods [14,15]. These trains consist of
5000 pulses whose stable components are simple flat-phase
Gaussians. The unstable components are time-gated thermal-
emission-type noise (that is, a given spectrum with a random
spectral phase for each frequency, as one would expect in the
absence of mode-locking) with the same average spectrum as
the stable component. The width of the time-gating function
controls the average length and complexity of the pulses.

Starting with a Gaussian with a pulse length of 2067 on a
grid of 4096 time points (where ¢ is an arbitrary time unit), we
use discrete Fourier transform relations to define the frequency
sampling as 6w = 27/40966¢, implying that the correspond-
ing bandwidth of the pulse must be 906w. This pulse functions
as the stable component of the pulse trains and defines the spec-
trum of the thermal noise. We adjust the time-gating function
applied to the thermal noise to make one pulse train with
an average full width at half-maximum (FWHM) pulse length
of 596t and average time-bandwidth product (TBP) of 2.7 and
second train with an average pulse length of 19267 and an aver-
age TBP of 9.1.

A 2DSI measurement of each pulse train was simulated for
two different frequency shears. The larger shear (96w) corre-
sponds to 10% of the FWHM bandwidth of the pulses.
The smaller shear (46w) corresponds to 4% of the FWHM
bandwidth. The simulated traces were created with 16 delay
increments per electric field cycle, with 4 full cycles.
Although 2DSI is an inherently multi-shot technique, the aver-
aged measurement is simulated with each pulse contributing to
the signal at each delay. We treat the measurement as an ergodic
process in which averaging over time is equivalent to averaging
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the whole trace over a large number of pulses. This is consistent
with typical oscillator repetition rates compared to delay stage
scan rates. However, if very few pulses are used to generate the
signal at each delay or if there is some systematic drift in the
laser source, then it is possible that the trace may not be peri-
odic with respect to phase offset. If this happens, it is a very
clear indicator of pulse-shape instability.

The number of pulses in each train (5000) is chosen to
be relatively consistent with common experimental practice.
Typical cameras have an exposure time of the order of tenths
of a second, meaning that even kilohertz-rep-rate systems can
average over several hundred pulses in a single frame, and the
more common megahertz-rep-rate systems average over consid-
erably more than 5000 pulses.

To determine what other features may signify that the pulse
train being measured is unstable, the simulation of an average
measurement over an unstable train of pulses is compared to a
simulation of the measurement of the stable pulse component
alone. Ideally, the measured spectral phase for the unstable train
would be different from the stable train, somehow reflecting the
properties of the unstable pulse component. However, even if
the retrieved spectral phase is the same for both, any differences
in the raw measurement would signal that the pulse train being
measured is not stable. To explore how important the approx-
imations are, we have simulated these 2DSI measurements
both using a CW-beam-type simulation (where the spectral
phase does not affect the upconverting beams) and the small
correction that includes the relative phase of the upconverting
frequencies.

Pulse Train

-600
Nonrandom train
Pulse length = 206¢

2DSI Small Shear

Frequency

4. RESULTS AND DISCUSSION

The simulated measurements of the pulse trains using 2DSI
without the relative phase correction are shown in Fig. 2.
Notice that all of the simulated measurements yield a flat
spectral phase, which is the frequency-domain equivalent of
the coherent artifact. Applying this flat phase to the separately
measured average spectrum yields a pulse with the same tem-
poral width as the stable component of the pulse train. This
means that, in most cases, 2DSI measures only the stable com-
ponent of an unstable pulse train—the coherent artifact. The
measurement result does not reflect any of the variations
between the pulses.

The one clear difference between the measurements of the
unstable trains and the measurement of the stable train is the
difference in fringe visibility. There is appreciable background
in the measurements of the longer unstable pulse train, which is
very obvious when using a large shear. The reason for larger
shears yielding worse fringe visibility is apparent from Eq. (3):
the fringes are shifted by an amount equal to the group delay
multiplied by the spectral shear. Variations in the group
delay due to pulse-shape instability cause the fringes to change
position from shot to shot. The larger shear causes more fringe
movement and therefore worse fringe visibility. This also ex-
plains why the fringe visibility is worse for the more compli-
cated pulse train. This train has more, larger variations in the
group delay, also causing more fringe displacement. All of these
trends are repeated for the simulations with the relative-phase
correction, shown in Fig. 3. As expected, the backgrounds are
generally larger and the fringe visibility is generally worse.
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Fig. 2. Coherent artifact simulation for 2DSI using CW beams to upconvert. Example pulses from the unstable pulse train are given in the left
column. The measurement and retrieved temporal and spectral intensity and phase are in the middle and right column. (Red is temporal intensity,
blue is temporal phase, dark green is spectral intensity, and purple is spectral phase.) Measurements in the middle column use a small frequency shear:
4% of the FWHM pulse bandwidth. The fringe visibility is 98% for the 5967 train and 78% for the 1926¢ train (backgrounds of 2% and 22%,
respectively). Measurements in the right column use a larger frequency shear: 10% of the FWHM pulse bandwidth. The fringe visibility is 90% for
the 596¢ train and 23% for the 1926¢ train (backgrounds of 10% and 77%, respectively).
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Fig. 3. Coherent artifact simulation for 2DSI taking into account the

relative spectral phase of upconverting frequencies. Measurements in the

middle column use a small frequency shear: 4% of the FWHM pulse bandwidth. The fringe visibility is 94% for the 606¢ train and 49% for
the 1926t train (backgrounds of 6% and 51%, respectively). Measurements in the right column use a larger frequency shear: 10% of the FWHM
pulse bandwidth. The fringe visibility is 76% for the 606z train and 3% for the 19267 train (backgrounds of 24% and 97%, respectively).

Interestingly, the background for the shorter unstable pulse
train increases much more when using a larger shear in this
simulation (see Fig. 4 for direct comparison). This means that
using the background as an indicator of instability should be
more robust than is suggested by the simpler simulation.
However, most of the measurements still produce fringes that
indicate a flat spectral phase and hence only a coherent artifact.
The exception to this generalization is the larger shear measure-
ments of the more complicated pulse train with the relative
phase correction. In this case, the fringes are nearly nonexistent,
with the background reaching 97% of the peak fringe visibility.
It is abundantly clear that this measurement represents a highly
unstable pulse train. However, the retrieved spectral phase is
not particularly indicative of the characteristics of the pulse

(@)

Fig. 4. Direct comparison of fringe visibility for large-shear mea-
surements of the 5967 pulse train (a) without and (b) with the relative
phase correction. The background is 10% in (a) and 24% in (b).

train. In fact, the retrieved phase changes if we choose different
frequencies (still separated by the same shear) to upconvert the
pulse (see Fig. 5).

Making a measurement that averages over significantly
fewer pulses still results in fairly flat spectral phases and short
retrieved pulses. Figure 6 shows the results of averaging over
10, 50, and 200 pulses from random train number 1 (instead
of all 5000) for both small and large shears, including the rel-
ative phase correction. For a small number of pulses with the
type of variations we consider here, the average spectrum is
significantly different from the average spectrum of the whole
pulse train. Despite this, the measured spectral phase is quite
flat. Therefore, the retrieved pulses are quite short and simple
in the time domain. Comparing trace (a) and trace (d) clearly

Fig. 5. Examples of different spectral phases (purple line, right) re-
trieved from traces (left) of the longer pulse train using different pairs
of frequencies in the chirped pulses to generate the same large shear.
A third example is in the bottom-right corner of Fig. 3.




1886

10 Pulse Average
(a) Small Shear

50 Pulse Average
(b) Small Shear

Vol. 32, No. 9 / September 2015 / Journal of the Optical Society of America B

200 Pulse Average
(©)

Small Shear

Research Article

Qoo - >
Q0o - —
Frequency Frequency Frequency
1 41 4 1 41 4 1 41 4
> > >
g 23 > 2 2 2 g 23 2
5 5 & 2 8 % © 2 S % o %
E 6 £ 6 2 6 2 & £ ¢ 2 %
4 0 4 -4 0 4 4 0, 4
9100 0 100 -150 0 150 -0100 0 100 -150 0 150 -0100 0 100 -150 0 150
Time Frequency Time Frequency Time Frequency
(d) Large Shear (e) Large Shear (f) Large Shear
Frequency Freuency
1 41 4 1 41 4 1 41 4
2> 2 2 2 2 2
Q n O 3 Q n O o o n O 3
= = 6 8 2 6 2 s 2 3
0 40 4 0 40 4 0 40 4
-100 0 100 -150 0 150 -100 0 100 -150 0 150 -100 0 100 -150 0 150
Time Frequency Time Frequency Time Frequency
Actual Pulses
1 4 1 4 1 4 1 4 1 4
> > > > >
2 3 3 v 3 ® g D g x
3 > 8 2 8 > 8 2 & &
z o £ o £ o £ o Z ®
0 4 oA 4 0 4 0 4 0 4
-100 0 100 -100 0 100 -100 0 100 -100 0 100 -100 0 100
Time Time Time Time Time
1 4 1 4 1 4 1 4 1 4
> > > > >
2 v 37 v £ D 3 2 3 2
] 2 o 2 o 2 S 2 © &
= @ £ ® € ® £ ® £ ®
0 - 0 -4 0 -4 0 -4 0 -4
-100 0 1004 -100 0 100 -100 0 100 -100 0 100 -100 0 100
Time Time Time Time Time

Fig. 6. Coherent artifact simulation for 2DSI considering a small number of pulses taken from random train number 1. The top row shows traces
created with a small spectral shear: 4% of the pulse bandwidth. The middle row shows traces created with a larger shear: 10% of the pulse bandwidth.
The bottom rows show the temporal intensity and phase of the ten pulses averaged over in traces (a) and (d). Trace (a) has 97% fringe visibility and
3% background. Traces (b) and (c) have 94% fringe visibility and 6% background. Traces (d) and (e) have 78% fringe visibility and 22% back-
ground. Trace (f) has 76% fringe visibility and 24% background.

shows the increased fringe displacement that occurs for larger
shear values. The retrieved spectral phase is identical for both

22%, which is only slightly lower than the 24% background
present in the large-shear, full 5000-pulse average of that pulse

shears in all cases. The lower part of Fig. 6 shows the ten
pulses that contributed to the average in parts (a) and (d).
These pulses are clearly rather long and complicated, in stark
contrast to their average measurement. The lesson is clear:
averaging over only a few pulses does not protect one from
making a very wrong measurement in the presence of serious
instability.

The fringe visibility in (a) is quite high at 97%, only show-
ing a 3% background. Interestingly, the background in (d) is

train. When averaging over 50 or more pulses, the spectral
phase is entirely flat and adding additional pulses mainly serves
to even out the average spectrum. The background in the small-
shear traces (b) and (c) is 6%, consistent with the small-shear
measurement of the full train. Likewise, the backgrounds in (e)
and (f) are 22% and 24%, respectively. Aside from the shape
of the average spectrum, these measurements of 50 pulses are
essentially the same as the corresponding measurements of
5000 pulses.
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Of course, when not working in the limit of averaging over
many pulses, the exact characteristics and behavior of the pulse-
to-pulse variations have a large impact on the results. One can
therefore expect the threshold at which the average measured
phase becomes flat to change based on the type and strength of
the variations considered. Nevertheless, it is clear that it is pos-
sible for a measurement of only a few pulses to be quite wrong,.

Based on our simulations, we conclude that considering the
impact of spectral phase on the chirped pulses is informative
and important when the spectral phase varies appreciably.
Of course, the reality of using stretched pulses as quasi-CW
beams to generate spectrally sheared replicas is even more com-
plicated than the simple correction considered here. However,
it is important to keep in mind that the viability of this mea-
surement technique depends on having a suitably accurate
mathematical description of the physical nonlinear measure-
ment. If too many adjustments to the model are required to
correctly model the experiment, then there are serious theoreti-
cal problems with the measurement technique.

In this case, further corrections or a full-field simulation are
unlikely to result in better fringe visibility. In addition, many
other causes of reduced fringe visibility are likely to remain con-
sistent in measurements with different spectral shears, while the
fringe visibility caused by instability becomes distinctly more
pronounced with large shears. We can therefore conclude that
the presence of background in a large-shear 2DSI measurement
is an effective warning of pulse-shape instability.

However, using large shears in spectral shearing techniques
can yield less accurate results because the measurement effec-
tively samples the group delay of the pulse more sparsely [19].
One consequence is that the assumption of the phase difference
being approximately the group delay times the shear, used to
transform Eq. (1) into Eq. (2), becomes less accurate. Higher-
order terms in the expansion of the phase become more
important and dropping them introduces larger errors for
large shears.

Fortunately, the frequency shear in 2DSI is an independent
parameter that can be adjusted without changing other mea-
surement parameters, by simply changing the delay between
the chirped pulses. A standard SPIDER setup does not have
this flexibility, because the spectral shear and the delay between
the pulses cannot be changed separately without also altering
the amount of chirp applied to the stretched pulse. This makes
it harder to do a direct comparison and makes it less likely that
any background due to benign alignment issues will be consis-
tent between measurements with different shears. There are
several other SPIDER variants besides 2DSI that are able to
easily adjust the spectral shear. In particular, in the absence
of spatiotemporal distortions, spatially encoded arrangement
(SEA) SPIDER [20] traces are essentially equivalent to the
2DSI traces shown in this paper, and the discussion presented
above will also apply directly to that technique. When the
spectral shear is an independent measurement parameter, it
is simple to make a large-shear measurement to verify the sta-
bility of the pulse train in addition to making a small-shear
measurement to better estimate the spectral phase of the pulse.
This has other beneficial implications: it has been shown that
spectral phase measurements taken at different shears can be
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combined to improve the overall accuracy of the retrieved spec-

tral phase [19].

5. CONCLUSIONS

In conclusion, 2DSI generally retrieves only a coherent artifact
when confronted with unstable pulse trains, but it can success-
fully warn users of very unstable pulse trains. This requires the
extra step of taking a measurement with a large frequency shear
to ensure that the fringe visibility is still good. In the absence of
this additional information, however, 2DSI can misrepresent an
unstable train of complicated pulses as a stable train of simple
pulses. In addition, small variations might remain undetected
even with an additional measurement. Consequently, this in-
formation should always be presented unless the stability of
the source has been convincingly guaranteed in some other
fashion.

Funding. Georgia Research Alliance (GRA); National
Science Foundation (NSF) (ECCS-1307817).
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