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We performed theoretical calculations of the relative diffraction efficiency of partially coherent light-induced
integrated-intensity gratings using pulsed sources, paying particular attention to thermal gratings. We provided a
simple intuitive picture of the phenomenon and then calculated exact expressions that, unlike instantaneous-
intensity-grating results, necessarily require the use of fourth-order coherence functions. Assuming several radia-
tion models, we evaluated these expressions and found that the results proved to be insensitive to the specific
radiation model assumed. The application of these results to a previously performed pulsed-laser experiment
yielded a better fit to the data than an expression involving only second-order coherence, which is valid only in the
cw limit. We included the effects of grating decay and, in addition, compared the use of integrated-intensity
gratings for ultrashort-pulse-length measurement with standard techniques. Finally, we calculated expressions for
the relative diffraction efficiency of integrated-intensity gratings created with excitation beams from two separate
and independent sources of different frequency, and we report an experiment whose results were found to agree with
this theory.

1. INTRODUCTION

Integrated-intensity gratings, induced in a material by inter-
fering light beams, arise in many nonlinear-optical experi-
mental techniques. In some degenerate four-wave mixing
materials, diffraction from integrated-intensity gratings
yields efficient phase-conjugate reflection.",2 In short-pulse
transient-grating experiments, the creation of integrated-
intensity gratings permits the measurement of diffusivity
constants and also the study of acoustic waves created in the
process.> 5 In addition, the large magnitude of some inte-
grated-intensity-grating effects has led to their use in
schemes for the measurement of ultrashort pulse lengths 6

and coherence times.7 ,8 On the negative side, integrated-
intensity gratings in the form of thermal gratings often prove
to be a nuisance in laser techniques intended to measure
population, but not thermal, effects.9 And in short-pulse
excite-probe experiments, the "coherence spike" often origi-
nates from a thermal grating or other integrated-intensity
grating.' 0

In all light-induced-grating interactions, the partial-co-
herence properties of the excitation beams play an impor-
tant role. We have known from the time of Michelson that
the ability to form integrated-intensity fringes requires good
temporal coherence between the excitation beams."1 A sin-
gle light source, providing both beams with a relative delay
of less than each beam's coherence time, is generally re-
quired for intensity fringes to be obtained. The use of a
large delay generally results in weak fringes, and worse, two
separate sources produce no fringes at all.

When integrated-intensity fringes arise in pulsed-laser,
induced-grating experiments, however, the situation is
somewhat different from the well-known example men-
tioned above. First, rather than using radiation of infinite
duration, these experiments employ a series of pulses, each
pulse being a finite number of coherence times in length.
Second, rather than the actual fringes, what is observed is a

beam diffracted by the fringes. And by measuring only the
intensity of the diffracted beam, we lose the information on
its phase, which consequently deprives us of information on
the induced-grating phase.

Why are these differences important? The loss of phase
information is important because, by measuring only the
amplitude of the grating fringes, we measure an inherently
positive quantity. And by using excitation pulses a finite
number of coherence times in duration, the total washout of
the intensity fringes that can take place in cw experiments
does not occur. On each pulse, then, we measure an inher-
ently positive diffraction efficiency. That positive quantity
is then averaged over many pulses to yield a potentially
significant signal. Thus pulsed-laser, integrated-intensity-
grating experiments can yield large diffraction efficiencies,
while cw experiments, or those that are sensitive to the
instantaneous phase of the fringes, will measure very little
fringe strength.

In this paper we give an intuitive picture of integrated-
intensity-grating formation with partially coherent light
pulses. We derive theoretical expressions for the diffraction
efficiencies of integrated-intensity gratings, and we show
that these expressions necessarily involve fourth-order co-
herence functions. This mathematical theory differs from
the second-order coherence-function theory of the Michel-
son interferometer and related fringe-producing devices
because induced-grating experiments measure the squared
amplitude of the fringes: the diffracted radiation field is
proportional to the complex grating amplitude, and the dif-
fracted intensity is what is measured. Because the complex
grating amplitude is proportional to the product of the two
excitation-beam envelopes, the product of four radiation
fields will occur in any expression for the observed diffracted
intensity. Any theoretical treatment of induced gratings
using partially coherent light pulses will then necessarily
involve fourth-order coherence functions.

This fourth-order theory reduces in the cw limit to the
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well-known second-order theory; the deviations from the
second-order theory will be proportional to the ratio of the
coherence time, T,, to the pulse length, Tp, of the excitation
radiation. Only in the past few years have light sources
achieved Fourier-transform-limited quality, for which Tc/rp

1, so that the above deviations from the second-order
theory have only recently become observable. And, in fact,
several recently performed pulsed experiments exhibit devi-
ations from the second-order theory. A variable-delay, inte-
grated-intensity-grating experiment performed by Eichler
et al.7 exhibited greater diffraction for large delays than
were predicted by the second-order theory. In addition,
various thermal-grating experiments employing excitation
beams from two separate lasers-for which the second-order
theory predicts no diffraction at all-observe such strong
diffraction that other (instantaneous-intensity) effects have
been obscured. 91 2 The fourth-order theory developed here-
in will accurately explain these experiments.

We will consider the special case of thermal gratings be-
cause typical thermal-grating decay times are generally
quite long compared with Q-switched- and mode-locked-
laser pulses, so that thermal gratings induced by such pulses
are in general modeled accurately as integrated-intensity
gratings. Other types of induced gratings will also behave as
integrated-intensity gratings, and the quantities used here
can be relabeled easily to describe them.

We derive exact expressions for the relative magnitude of
the (integrated-intensity) thermal-grating diffraction effi-
ciency for several radiation models, specifically, amplitude-
stabilized and thermal radiation with Lorentzian and Gauss-
ian line shapes. For thermal radiation, these expressions
reduce to particularly useful and intuitive results when the
radiation coherence time is much less than the pulse length.
In this regime, our expressions contain two terms, one equal
to the squared magnitude of the second-order coherence
function and the other proportional to the pulse envelope
autocorrelation function. Applying these results to a previ-
ously performed experiment, 7 we obtain a better fit than
that obtained with previous theories.

In addition, we discuss the merits of thermal-grating tech-
niques for the measurement of laser pulse lengths and coher-
ence times and compare these techniques with standard
methods. Finally, we calculate the relative diffraction effi-
ciency of an integrated-intensity grating using two indepen-
dent excitation sources, and we report an experiment whose
results agree with the predictions of this theory.

Previous theoretical work on thermal and other integrat-
ed-intensity gratings induced with pulsed partially coherent
radiation include that of Vardeny and Tauc,10 who obtain
some of the general expressions contained here but do not
consider specific radiation models. Eichler et al.7 do consid-
er specific models for the input radiation but employ a sec-
ond-order theory, obtaining only coherence effects and not
pulse-length effects. Idiatulin and Teryaev,6 on the other
hand, obtain the pulse autocorrelation term but not the
coherence term. Many authors have treated the so-called
"coherent-coupling spike" of ultrashort-pulse, excite-probe
experiments' 3 -l6 and some have included integrated-inten-
sity effects and fourth-order effects, but none have consid-
ered specific radiation models. Grossman and Shemwell' 7

calculated the effects of poor coherence on phase conjuga-
tion by degenerate four-wave mixing. Finally, fourth- and

higher-order coherence functions arise in a number of phe-
nomena; numerous calculations involving them exist in the
literature, 1 1,18,19

2. PRELIMINARY THEORY: AN INTUITIVE
PICTURE AND A REVIEW OF INTEGRATED-
INTENSITY-GRATING THEORY

A simple argument shows how, despite poor coherence be-
tween excitation beams, a pulsed-laser-induced, integrated-
intensity grating will diffract light and, in addition, approxi-
mately how much light will be diffracted. Suppose the exci-
tation pulses are N coherence times long. The phase of the
intensity-fringe pattern will change randomly (and, we as-
sume for simplicity, discretely) on the scale of a coherence
time. After N coherence times, the integrated-intensity-
grating complex amplitude, A, will be the sum of the individ-
ually contributed gratings from each coherence-time period:

N

A = E exp(i5,),
M=1

(1)

where ekm is the phase of the fringe pattern during the mth
period. The expected diffraction efficiency, (), is propor-
tional to the ensemble expectation of IA 12 and will be

(77) a (Z exp(im) ) (2)

For randomly distributed individual phases, Om, the expec-
tation value takes on the value N. Thus, the diffraction
efficiency will not be zero. For comparison, suppose that
the coherence between the beams is perfect. Then,
throughout the pulse (continue to break the pulse down into
N increments), all contributions to the grating will be in
phase, i.e., all 0m are equal. As a result, in this case, ( 7 ) 
N2 . Comparing the diffraction efficiencies of these two
cases indicates that poor coherence results in a lessened
diffraction efficiency by a factor of N, the ratio of the pulse
length to the coherence time. In the cw limit, N - -, and
this reduction is infinite, but in pulsed-laser experiments N
will be a finite number and a considerable diffraction effi-
ciency will remain.2 0

This argument shows that when the excitation sources of
an integrated-intensity grating are independent, the diffrac-
tion efficiency of the grating will be reduced by a factor of
the order of r/rp, where re is the coherence time and Tp is the
pulse length. The argument applies to experiments em-
ploying one light source in which the relative delay between
the two excitation beams derived from this source is much
greater than the source coherence time. It also applies to
experiments employing two independent light sources of the
same frequency. Thus, despite the minimal coherence be-
tween the two excitation beams in these two types of experi-
ment, a finite diffraction efficiency will exist.

To formalize the above argument and to allow for specific
radiation models, we must take into account the actual time
dependences of the excitation fields. Consequently, we con-
sider two quasi-monochromatic plane waves of the same
frequency (w) and polarization ()

6 1(r, t) = Re El(t)exp i(wt - k r)P,

62(r, t) = Re E2(t)exp i(wt - - r)P,
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where E1 (t) and E2 (t) are slowly varying complex ampli-
tudes. Suppose that these two beams of light simultaneous-
ly illuminate an absorbing material. In cgs units, the inten-
sity in the material will be

I(r, t) = I1(t) + I2 (t) + Re 2 8(,1)112E,(t)E2 (t)
Sr

X exp(-ikg, -r), (3)

where 1i(t) and I2(t) are the individual beam intensities, kgr
- k - k2 is the grating k vector, is the permittivity of the
medium, , is the magnetic permeability, and c is the speed of
the light in vacuum.

We will now consider a special case of integrated-intensity
gratings: the phase grating resulting from the combination
of a nonzero dn/dT, where n is the material refractive index
and T is the temperature, and the spatially sinsuoidal depo-
sition of heat in an absorbing material. Thus, we require the
energy density deposited in the absorbing material in a time
interval, rp (i.e., the pulse length),

W(r) = aJT I(r, t)dt, (4)
Jp/2

where a is the material absorption coefficient, and we will
assume that only a small fraction of the beam intensity is
absorbed by the material so that the intensity remains inde-
pendent of position in directions perpendicular to kgr. If s
is the fraction of the deposited energy that becomes heat,
then the resulting temperature distribution in the material
will be

T(r) T + ( )W(r), (5)

where To is the ambient temperature, p is the material densi-
ty, and c is the specific heat at constant volume. We as-
sume that no heat-dissipative effects take place on the time
scale, rp. Substituting Eqs. (3) and (4) into Eq. (5), we
obtain both a uniform increase in the material temperature,
ATo, and a spatially modulated term, ATgr,

T(r) = To + AT + Re ATgr exp(-ikgr -r), (6)

where

ATO - - | [1(t) + I 2(tldt (7)
PC, J/2

ATgr =-2 a c (e/M)1/2 f EI(t)E2 *(t)dt.
PC, S7r .I-rPI2

(8)

The thermal grating arises directly from the spatially modu-
lated term.

Most materials exhibit a temperature-dependent refrac-
tive index. Consequently the spatial temperature modula-
tion will become a spatial refractive-index modulation, or
phase grating, with amplitude Angr:

Angr = (dT) pcf2 8 t/)1/2 /2 E1(t)E2 (t)dt ,
_d lpc, S7r J2~

(9)

where dn/dT is the derivative of refractive index with re-
spect to temperature, evaluated at To + ATo. The diffrac-
tion efficiency, tq, of this phase grating will be

/2 ~~~~2
I = K2 T El(t)E2 ' (t)dt 

J-Tp/2
(10)

where

K= (dn) $C 2 (/p) 1 2 hpJ.
kdT) pc, Sr

(11)

kpr is the probe-beam k vector and L is the sample length.12

We have assumed the low-diffraction-efficiency limit. If we
now explicitly assume monochromatic beams, whose field
amplitudes, Ei(t), will be constant, Eq. (10) becomes

ii = K21E 1
2IE212T 2. (12)

Use of Eq. (12) for relative numbers yields interesting and
useful information. 21 Absolute estimates obtained by using
Eq. (12), however, usually give results that are several orders
of magnitude larger than experimental values.

Several factors contribute to lowering the efficiency of a
thermal grating from this theoretical value. First, the depo-
sition of heat into the sample may require a significant
amount of time, so that if relatively short pulses are used and
probing occurs simultaneously with or just after excitation,
the temperature-modulation buildup will not be complete
until after probing occurs. Second, in general, the tempera-
ture grating must generate a density grating to cause the
refractive-index modulation. This process also takes time
and will contribute to the observation of a much weaker
grating than that predicted by Eq. (12) in short-pulse experi-
ments.22 Third, spatial variations in the excitation-beam
intensities can also result in significantly less efficiency than
would be expected from a spatially-flat intensity distribu-
tion.23 Finally, temporal variations in the excitation-beam
fields in both amplitude and phase will also act to change the
efficiency. Of particular importance are temporal varia-
tions in the phases of these beams, which can result in a
variation of the induced-grating phase and a washing out of
the induced grating. These phase variations are similar to
those that result in the loss of fringe visibility in the Michel-
son interferometer.

The inclusion of all the above effects is beyond the scope
of this work, and as a result we will not attempt to predict
absolute diffraction efficiencies but only relative efficien-
cies. We have, however, already included the effects
of temporal variations in the excitation-beam fields in Eq.
(10), which we will rewrite here as

= '2 2 p22 El(t9)E2 *(ti)Ei*(t2 )E2 (t2 )dtldt2. (13)
-Tp/ -Tp/2

Rewriting this equation in terms of dimensionless field
quantities, ui(t), we have

, = K21E t 2EJ'2I Ul(tl)U2*(tl)Ul*(t2)U2(t2)dtldt2I

= EpE 2 U/2

(14)

in which Ei(t) = Eiui(t), where Ei is a constant field magni-
tude and ui(t) contains the time dependence of the excita-
tion-beam fields, i.e., phase and amplitude fluctuations.
The expectation value of the modulus of ui(t) is assumed to
be unity.

We will compare results obtained by using Eq. (14) with
those of Eq. (12), which is an ideal case involving monochro-
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matic radiation (although averaged for a time, Trp, only). In
all comparisons, the several effects mentioned above, which
affect the value of K, will cancel when we normalize
by the monochromatic-beam diffraction efficiency,
K2 IEl 12 E2 1 2,p2. So define the normalized thermal-grating
diffraction efficiency, v:

1 Jr/2 gr/2

7 = I u,p Ul(tl)u2*(tl)ul*(t2)U2(t2)dtldt2- (15)

We must recognize that the thermal-grating diffraction effi-
ciency is a statistical quantity, that is, variations in the
diffraction efficiency will occur on a shot-to-shot basis owing
to variations in the excitation-beam temporal waveforms.
Most experiments measure averages over many shots; it is
therefore necessary to consider the ensemble expectation of
the normalized diffraction efficiency:

= fI/ tr/
2 / t(1)2(tfl*(t),, (tl)dtldt2\ (16)

where the brackets denote the ensemble expectation opera-
tor and we have permuted the factors within the brackets.
The time-integration and expectation operators commute,
so we have

1 {Tp/2 frp/2

=r 2 -Tp/2 -rp/2
7p

2

(ul(tl)u2 (t2)ul'(t2)u2*(tl))dtldt2 , (17)

which is similar to results derived by others. 6"10"13 The deri-
vation of this result does not depend on the specific proper-
ties of the statistics of the radiation field. The product of
four fields has arisen because the measured quantity is the
square of the fringe intensity-pattern amplitude.

3. THERMAL GRATINGS INDUCED BY
PARTIALLY COHERENT LIGHT FROM A
SINGLE LASER

Suppose that both excitation beams emanate from the same
laser or light source but that one beam traverses a greater
distance than the other before reaching the sample material
(see Fig. 1). Assume further that the delay between the two
beams, d, is much less than the pulse length, Tp, so that
excitation-pulse overlap in time is good. We have, there-
fore, u2(t = u1(t + Td), so that the integrand in Eq. (17)
becomes (u1(t,)u,(t2 + Td)u1 (t2)Ul*(tl + Td)), which is the
fourth-order coherence function, (4 )(tl, t2 + Ird; t2 , tl + d)
for the field ul(t). Equation (17) now becomes

if = J/2 frp/2

7 2 -3,L2 )-r/2
r(4)(t,, t2 + 7- d; t2 , tl + 7-d) dtldt2 . (18)

DIFFRACTED O'w
SIGNAL i Z
PULSE

PULSES

SAMPLE

DELAYED'
PROBE
PULSE

Fig. 1. Experimental arrangement for the study of integrated-
intensity gratings. Two excitation pulses experience a variable
delay with respect to each other and excite the grating. The probe
pulse, further delayed, probes the induced grating, and a detector
detects the diffracted beam.

We will use various models for the excitation-beam statis-
tics, including an amplitude-stabilized quasi-monochromat-
ic source24 (which is often used to approximate a single-
mode laser) with a Lorentzian frequency spectrum and also a
thermal light source1 (which approximates multimode laser
sources) with Lorentzian and Gaussian spectra. All these
theoretical radiation fields represent ergodic processes,
while the pulsed nature of the experiment, which could oth-
erwise destroy ergodicity, is included by integrating for the
time pj. Later, pulse-shape effects will be included by the
inclusion of a deterministic pulse-shape function, A(t), with
the random process, u(t), still retaining the convenient prop-
erty of ergodicity. In general, however, laser light does not
represent an ergodic statistical process. And, in particular,
the above models do not accurately describe certain types of
laser radiation, e.g., mode-locked-laser pulses.'1 It should
be noted here, though, that each of the above models yields
approximately the same quantitative results, which agree
well with both intuition and experiment and are therefore
adequate for many purposes.

The recursion relation for the fourth-order coherence
function of an amplitude-stabilized quasi-monochromatic
Field is 24

r (4(t", t2 ; t3 t) = r(2)(t, - t)r( 2 (t2 - t4 )

r(2)(t, - t4)r(2)(t 2 - t)

X(2)(t - t2)r(2)(t3 t4 )

and, for thermal radiation, the recursion relation is 

r(4Q(tj, t2; t3, t4) = r(2)(tj - t3) r(2) 42 - 04

(19)

Equation (18) is the ratio of two quantities: the first is the
expected efficiency of a thermal grating probed after its
formation, when both excitation pulses emanate from the
same partially coherent source with relative delay, Td, be-
tween them, and the second is the diffraction efficiency of a
similar grating formed with monochromatic excitation
beams. To proceed further, we must assume a statistical
model for the partially coherent excitation radiation. It is
not sufficient to know merely the frequency spectrum of the
excitation radiation, because the recursion relations relating
the fourth-order coherence function to second-order coher-
ence functions depend on the radiation model used.

+ r (2(t, - t4 )r' 2(t 2 -t3). (20)

The required integration of these quantities for radiation
with Lorentzian and Gaussian line shapes is not difficult,
and exact results for various cases are given in Appendix A.
The results for all models considered are similar. For the
purposes of discussion, we consider thermal radiation with a
Lorentzian line shape (a reasonable approximation of a
multimode pulsed dye laser). The expected normalized dif-
fraction efficiency to first order in m,/r is

(q) - + exp(-2Td/rcl) =-+ i (d)I (21)
7
p p
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The exponential (the second-order coherence function) in
expression (21) is the well-known "second-order" result,7

while the other term corresponds to the background, which
results from the incomplete washout of the grating in the
finite number of coherence times in the pulse length, despite
the relative incoherence of the beams. A few limiting cases
are of interest:

(1) When the delay, Td, is zero, () 1, as expected:
when the delay is zero, the relative phase of the two excita-
tion beams does not change, and no grating washout occurs;
this situation is equivalent to that of monochromatic excita-
tion beams.

(2) When the pulse length, Tp, approaches infinity, our
result approaches the well-known result for the cw limit:
(X7) = exp(-2jTd/Tj) = r( 2)(rd)12 . In this case, grating
washout will occur for large delays (Td >> T,) but not for small
delays (Td << T), as expected.

(3) When the coherence time, T, is close to zero, the
intensity pattern may exist for a finite time, but its phase
dances back and forth extremely fast, again washing out the
grating: () = 0 for all nonzero values of delay.

(4) The most interesting limit is the case rd >> r,, but
with rp finite. We then have (y) / rTp. This means that,
despite using a delay much longer than the coherence time, a
nonzero expected diffraction efficiency results. This occurs
because the finite pulse length allows only rp/rc coherence
times for washout to occur, and, as a result, washout will not
be complete. This limit illustrates the primary difference
between pulsed and cw experiments, and it shows that ther-
mal gratings can exist in experiments in which excitation
beams are drawn from separate lasers (equivalent to the T

d

limit), provided that their average frequencies are
equal.

When the delay between pulses approaches the laser pulse
length, poor pulse overlap begins to occur and pulse-shape
effects must be included in the analysis. When this hap-
pens, the T/Tp-background level will decrease, and when Td
>> Tp, the background will approach zero because the excita-
tion beams cease to overlap at all. It is easy to see that, if we
write the field as E(t) = EA(t)u(t), in which u(t) is the
statistical factor that includes the phase of the field and A(t)
is a normalized, real, deterministic amplitude function, Eq.
(18) becomes

('1) = -2 f J A(t1 )A(t 2 + rd)A(tl + Td)A(t2)

X ,(4)(t 1, t2 + Td; t1 + rd' T2)dt1dt2. (22)

This expression is also easily evaluated for the various
radiation models of interest, and Appendix B contains exact
expressions for thermal radiation with Gaussian and hyper-
bolic-cosecant-squared pulse shapes. We can, however, derive
a simple and intuitive expression, analogous to relation (21),
when r, << p. If we assume thermal radiation, we obtain

) Tc J I(t)I(t + Td)dt + Ir(Td) I (23)

independent of the precise shapes of the pulse and line and
where I(t) is the normalized intensity: I(t) - A2(t) defined

o I

LL D ()Td
LL

W WI
N 13 

Fig. 2. Plot of theoretical diffraction efficiency versus delay be-
tween excitation beams for the case of r« < pU.

so that when T d = 0, the integral in expression (23) is unity.
As before, the second term is the well-known second-order
result 7 and the first term is the background, now seen to be
the pulse autocorrelation function. The magnitude of the
first term is still r/p smaller than the second, but now only
when T d = 0; when I Id increases to values on the order of r,
the first term's strength decreases (see Fig. 2).

4. COMPARISON WITH EXPERIMENT

These expressions describe a grating experiment performed
by Eichler et al.,7 in which picosecond pulses from a frequen
cy-doubled Nd:YAG laser were split and interfered to form
an integrated-intensity grating (probably thermal but possi-
bly having a long-lived population component, also) in a
solution of Rhodamine 6G dissolved in ethanol. Eichler et
al. fitted their data to a second-order theory, and their best
fit is shown as the dashed line in Fig. 3. We haye fitted their
data to a fourth-order theory, shown by the solid line, result-
ing from a hyperbolic-secant-squared pulse shape and ther-
mal Lorentzian line and using expression (23):

cydol rd trd/TA cosh( d/rp) - sinh&t/p tf

bly havig asinh copIt a) )i

+ exp(-2 d/CrI), (24)

where = 1.7627. The fourth-order theory yields a much
better fit. We derive the pulse length from the width of the
"background" to be 26.5 0.5 psec, a bit higher than the
value measured by Eichler et al. with a streak camera: 22 +
4 psec. The smaller error bars accompanying our value
reflect the multishot averaging in the grating experiment
(compared to the single-shot nature of the streak camera
measurement). We also derive a coherence time, , of 8.5 ±
0.5 psec from the width of the central spike, also larger than
the experimental value measured by Eichler et al. of 2.7
psec, and obtained from the expression TC = 1/r b, where v
= 1.2 X 10ll Hz. This discrepancy is probably due to the
fact that Eichler et al. measured 5v by using different pump
powers and alignments than were used in this experiment.
Significantly, the theory fits the data reasonably well, de-
spite the fact that the ratio of the magnitudes of the two
terms is determined by these two times and cannot be inde-
pendently curve fitted.

It should be noted that, in using expression (23), we have
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7

2nd ORDER THEORY

1~~~~~~~~~

-40 -20 0 20
rd (psec)

Fig. 3. Experimental integrated-intensity-grating diffraction 
ciency versus relative delay in an experiment of Eichler et al.

7

dashed curve represents the best fit to a (cw-limit) second-oi
theory, while the solid curve represents the best fit to an approxi
tion to the fourth-order theory developed here. Note that
fourth-order theory yields a much better fit in the wings of the d
where only incomplete washout of the grating occurs, and 
pulse-overlap limits the diffraction efficiency.

normalized thermal-grating diffraction efficiency if probing
occurs after its formation.

We would like to simplify these expressions further. Ob-
serving that, for Fourier-transform-limited pulses, r, - Tp,
and partial-coherence effects will be absent (both methods
yield the pulse autocorrelation without central spikes).
Thus we must consider the r << rp regime. To do so, a
radiation model must be chosen. We will again choose a
thermal model, for simplicity but also because, when i> << rp,
good mode locking has evidently not occurred and consider-
able randomness in the modes' phases must exist. Copying

40 the result for thermal gratings, expression (23), and using
the recursion relation for r(4), Eq. (20), we obtain

3ffi-
The
rder
ma-
the
ata,
poor

(0TG) J I(t)I(t + rd)dt + ir2 (rd)2
Tp _E

(27)

and

(YJSHG) J I(t)I(t + Td)dt + IP(21(rd)I
2
, (28)

employed a theory that assumes that -r << rp to fit data in
which these quantities apparently differ by only a factor of
approximately 3. The error introduced by this assumption
will be of the order of rc

2
/'rp

2
, and, in general, the coefficient

multiplying this quantity is less than unity (see Appendix
B). The maximum error anticipated here is a few percent.
Significantly, the use of exact results for radiation with a less
appropriate (Gaussian) pulse shape (Eq. (B5)] fit the data
equally well. The error introduced by the use of a thermal-
radiation model to describe the mode-locked pulses is proba-
bly larger.

5. PULSE-LENGTH MEASUREMENT USING
THERMAL GRATINGS

Eichler et al. performed their experiment to demonstrate
that integrated-intensity gratings can be used to measure
radiation coherence times. We have observed that their
experiment also provides an autocorrelation measurement
for the pulse length. Because thermal gratings can be quite
efficient and because automatically phase-matched geome-
tries (such as the polarization spectroscopy geometry used
by Song et al.

2 5 and some background-free geometries em-
ploying counterpropagating excitation and probe beams2 6)
exist for the performance of thermal-grating experiments,
such a technique may be preferred over current techniques,
such as second-harmonic generation (SHG).

We can compare this thermal-grating pulse-autocorrela-
tion method with SHG methods by noting that the expected
normalized SHG energy efficiency ( SHG) can be written as

(nSHG) = J (A(t)A(t + TdtdthU(t + Td)I)dt, (25)

where as before A(t) represents a smooth deterministic
pulse-shape envelope and u(t) contains the phase and ampli-
tude fluctuations. Rewriting this expression, we have

(nSHG) = J A2(t)A 2 (t + rd)F(4)(t, t + T'd; t, t + Td)dt. (26)

This expression is analogous to Eq. (22), which gives the

when Tr << rp; TG stands for thermal grating. Thus the
autocorrelation function is weaker in thermal-grating meth-
ods by a factor of r/T. For pulses that are far from Fourier-
transform limited, the autocorrelation may be difficult to see
next to the central spike. That this background attenuation
occurs is no surprise: thermal-grating methods are sensitive
to phase variations in the beams, and the resultant fringe
washout reduces diffraction efficiency. It must also be ad-
mitted that sensitivity to phase is in general not desirable in
a pulse-amplitude measurement technique. Thus SHG or
other methods, such as two-photon fluorescence, that mea-
sure only the pulse amplitude yield more desirable informa-
tion, while thermal-grating methods are less expensive and
are easier to perform.

On the other hand, because of the reduced autocorrelation
background due to this phase sensitivity, thermal-grating
techniques may provide an excellent measure of radiation
coherence times, as suggested by Eichler et al. It must be
remembered, however, that one measures a fourth-order
coherence function, not a second-order coherence function,
and unless the experimenter knows the appropriate model,
i.e., recursion relation, for his radiation, it may not be possi-
ble to extract '(2 )(t) from the measurement.

6. INCLUSION OF GRATING-RELAXATION
EFFECTS

If the grating decay time is of the order of the laser pulse
length, a new theory incorporating this decay, the laser pulse
shape, and perhaps partial coherence effects must be devel-
oped. This is easily done,'0"12 and Eq. (17) becomes

(7(t)) = L L A(t,)A(t 2 + d)A(t 2 )A(tl + Td)

X r(t, t2 + Td; t2, tl + Td)h(t - tl)h(t - t2 )dtldt2 ,

(29)

where h(t) is the grating decay function. The diffraction
efficiency is now necessarily time dependent because, using
pulses, the grating will eventually decay away completely.
Usually the grating decay function will be exponential: h(t)
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= exp(-t/Tth)0(t), where Tth is the decay time scale and 0(t) is
the unit step function. We assume thermal radiation and
again work in the regime 7C << rp. Also, we assume square
pulses, A(t) = rect(t/Tp), for simplicity, and calculate the
diffraction efficiency for points in time after the two pulses
have passed through the sample material. For delays that
yield at least some pulse overlap,

(n(t)) =exp- ) T th sinh( r |rd)

+ 4rth Ir 2 (rd)I sinh ( p )] (30)

We can more easily compare Eq. (30) with previous results
if we renormalize so that the coefficient of I P(2)(Td)12 is one
and also assume that I Td I << Tp:

r~ sinh(rP/-z-h) + P2 () I12. ( 1( C))K4 *h + |rX (-d) * (31)4
Tth sinh2(rP/2rth)

Expression (31) simplifies significantly in a few limiting cases:
(1) Tth << p:

( ~(t) ) c + r(2)(d)I2 (32)
T'th

Thus, within a factor of 2, the thermal-grating decay time
replaces the pulse length in expression (21). This makes
sense because, recalling the argument leading to expressions
(1) and (2), deposited energy now remains for a time, th,
only. As a result, we must now consider the number of
coherence times in a thermal-grating decay time rather than
in a pulse length, because grating-fringe contributions creat-
ed more than Tth ago are no longer present.

(2) rp << rth:

(7(t)) - + IrP2 (rd)|. (33)

This result is just expression (21), as expected.
(3) Trp < Tth:

(7(t)) i -[1 + 1 ( I ] + Ir (rd) 2. (34)
P L 2Tt

From this approximate result, we can see that the thermal-
grating decay time must be as short as, or shorter than, the
pulse length before decay effects are observed. The overall
strength of the diffraction process depends sensitively on
the thermal-grating decay time, but the ratio of the two
terms, as indicated in expression (34), does not sensitively
depend on Tp/rth unless rth is less than rp.

7. INTEGRATED-INTENSITY GRATINGS
INDUCED BY PARTIALLY COHERENT LIGHT
FROM TWO SEPARATE LASERS

In the limit of large delays (specifically, r, << Td), the prob-
lem approximates that of using two separate, independent
sources of the same frequency. We now specifically consid-
er the problem of integrated-intensity-grating formation
with two independent sources with potentially different fre-
quencies. This problem is of interest because many re-
searchers employing (two-excitation-laser) variable-fre-

quency, induced-grating techniques to measure excited-
state relaxation times have instead seen only thermal-
grating effects.9 12 An understanding of thermal gratings in
two-excitation-laser experiments is important for the
development of techniques for their suppression.27

The simple argument at the beginning of Section 2 shows
why a nonzero diffraction efficiency is to be expected when
the frequency difference between the two excitation lasers,
Ac, is zero. We now generalize and formalize that result for
all values of Ace. Recalling Eq. (17) and observing that the
two radiation fields, ul(t) and u2(t), will now be indepen-
dent, we can separate the expectation operator into the
product of two expectations. The expected normalized dif-
fraction efficiency will now be

(iAc) = ' 2 /r~2 (2 t (t )P (2)*(tl; ddr t2)r2J -/ t2)dtldt2
TP p /2 -g

(35)

where ri(2) (t1 ; tk) is the second-order statistical coherence
function of the ith excitation-beam radiation field.

Because the excitation lasers will, in general, lase at differ-
ent frequencies, r, 2 (tl; t2 ) , r2(2)(tl; t2 ), even if the lasers are
otherwise identical. For wide-sense-stationary light
sources, the arguments of the coherence functions can be
written: t t2. As a result,

J J=p -T1122 J-rp/2 P~~t

x Ir2(2)*(tl -t2)dt 1 dt2 . (36)

A routine change of variables (t = tl - t2; s = t1 + t2 ) allows
one integration to be performed trivially:

(1(Ac)) = 2 J, (1 - It/rI )r( )(t)r 2(
2 )*(t)dt, (37)

where Tp' = Tp/2. Equation (37) can be evaluated exactly
for the various statistical models we have been considering.

A general result can be obtained, however, in a useful
limiting case. When each coherence time is much less than
the pulse length, the functions IPz2(t)I2 will be close to zero
for all values of t for which the factor (1 - t/rpl deviates
significantly from unity. This factor can thus be set equal to
one with good accuracy. In addition, the integration limits
may be extended to -- and +-, respectively, in this limit.
We then have, if -r << r,:

(X(Aco))t P 1l(
2 )(t)P2(2 )*(t)dt, (38)

Trp _fcj

and thus the thermal-grating line shape is just the Fourier
transform of the product of the magnitudes of the second-
order coherence functions of the excitation fields. Expres-
sion (38) can be rewritten in a different form using the
Wiener-Khinchine theorem,1 ' assuming wide-sense-sta-
tionary excitation fields:

fI (4 2(wodco, (39)T~p J-CD

which is just the convolution of the excitation frequency
spectra: If we substitute into expression (38) or (39) the
appropriate functions corresponding to Lorentzian and
Gaussian line shapes, we obtain thermal-grating line shapes
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that are similar but are wider by factors of 2 and A, respec-
tively. Also, as expected, the maximum value of (n(AwD,
occurring at Aw = 0, is r/T in both cases.

8. COMPARISON WITH EXPERIMENT

We performed a two-excitation-laser, variable-frequency in-
duced-grating experiment with the sample material mala-
chite green dissolved in ethanol (3 X 10-4 mol/liter) and
simultaneously measured both the laser line shapes and the
thermal-grating line shape. Our experimental apparatus is
shown in Fig. 4. Three Q-switched Nd:YAG laser-pumped
pulsed dye lasers provided -300-ptJ pulses of -7-nsec dura-
tion at a repetition rate of 10 pulses/sec. Two dye lasers
provided excitation beams (at 615 nm), while the third (at
610 nm) provided the probe beam. Probing occurred simul-
taneously with the grating formation. The two excitation
lasers were adjusted to have equal linewidths (0.8-cm-1
FWHM), and their line shapes were observed to be similar.
The laser linewidths were monitored with a 1-mm-thick
fused silica 6talon (3.3-cm-' free-spectral range and a finesse
of 30), and the lasers were adjusted until they had the same
linewidth. The precise line shape of the variable-frequency
excitation laser was obtained by detecting the transmission
of this beam through the above talon during the experi-

Fig. 4. Experimental apparatus for the study of integrated-inten-
sity gratings formed with two independent excitation sources.

THERMAL GRATING LINEWIDTH

MALACHITE GREEN
IN ETHANOL

X = 61344
Xpr= 6095 A

- THERMAL GRATING
SIGNAL

DYE LASER
LINE SHAPE

AWFWHM = 148 ± .14cm- 1

Sw= .79+ .05c CI

\-AWFWHM

AU FWHM +9 + 2

aW

I I I I

-4 -2 0 2

AW=W 2 -w1 (cm 1 )
4

Fig. 5. Two-excitation-laser integrated-intensity-grating diffrac-
tion efficiency versus A. Also shown is a dye-laser line shape.

ment. The thermal-grating diffraction efficiency and ta-
lon transmission were measured simultaneously. Figure 5
shows an example of these measurements. Only one laser
line shape is shown. The laser line shape is intermediate
between Gaussian and Lorentzian. We therefore expect the
ratio of the thermal-grating linewidth and laser linewidth to
be between j2 and 2. The measured value is 1.9 + 0.2
(corrected slightly for the talon linewidth), within the
above theoretical range. The thermal-grating and laser line
shapes are also similar. Finally, it should also be mentioned
that a second-order theory predicts no thermal-grating dif-
fraction at all in this experiment.

9. CONCLUSIONS

We studied the theory of the formation of integrated-inten-
sity gratings with partially coherent pulsed-light sources.
Evaluating the theory for several radiation models yielded
simple expressions for the thermal-grating diffraction effi-
ciency, containing only two terms in the limit > << rp, a
coherence term and a pulse-autocorrelation term, assuming
a thermal model for the excitation radiation.

Applying this theory to a previously performed experi-
ment, we obtained better agreement with the experimental
data. We discussed thermal-grating techniques for pulse-
length and coherence time measurement, and included grat-
ing-decay effects in the model. Finally we considered the
case of integrated-intensity-grating formation with beams
from two separate and independent sources of arbitrary fre-
quencies. Performing an experiment using three separate
lasers, we found this theory and the experiment to be in
agreement.

APPENDIX A: EXPRESSIONS FOR SEVERAL
RADIATION MODELS

The amplitude-stabilized quasi-monochromatic radiation
field is described by the expression

E(t) = AO exp(iw0t + +(t) + 0),

where AO is a constant field amplitude, -'0 is a random vari-
able uniformly distributed over the inverval [--r, r], and

(t) is a random process. Picinbono and Boileau24 describe
this type of light in more detail. Thermal radiation fields
correspond to the sum of a large number of such sources and
are described in more detail in the text of Goodman," whose
conventions we will follow.

Gaussian and Lorentzian frequency spectra, IG(o) and
IL(w), will be assumed to be of the forms

4() l= [ (= I X)\] (Al)I(,dexp -4In2 (l

and

(A2)IL(CO) = - 4/6c
1 +4( 2

6w)

where w is the FWHM of each frequency, spectrum. We
will use the following expressions for the second-order co-
herence functions:

'2) (t) = exp(iwot) exp(-It/rcI) (A3)

40 r

20 

0 K
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for a Lorentzian line, in which r, = 2/6o, and

r2l)(t) = exp(icot)exp( t2 /27,')
A4(t)dt = J1 2(t)dt = 1, (R2)

(A4)

for a Gaussian line, in which -r, = 8i in 2/&o. In each of the
above expressions, -r is the radiation-field coherence time,
which is necessarily less than the pulse length, rp, and which
is defined so that

i.e., a dimensionless, unity-magnitude autocorrelation.
For a thermal Lorentzian line and a Gaussian pulse shape

then, Eq. (22) becomes

(?i) = exp[-2 in 2(rd
2
/rp

2
] {exp( /2)

J, = JIr(2)(t)12dt.

The diffraction-efficiency relations can be evaluated with-
out the need for further approximations. We obtain, for an
amplitude-stabilized quasi-monochromatic Lorentzian line,

- 2 - + 2

_ 7'Tp+ 1 2Td+ Td

T 2 r 2 T ] i2P/c)
+ Td c -1 - _ ilexp(-2 Ird /r I)

T-2 2 2I

which, to first order in Tc/Tp and Td/Tp, is

Tp [ I - 2 exp(-2 TdIT, | -

(A6)

(B3)

When r- << Tp, this result simplifies considerably:

2n In (2 ) exp[2 ln 2(1d 2
/rp

2 )] + exp(-2 ITd/TC 1).

(B4)

A thermal Gaussian line with a Gaussian pulse shape
yields

( n ) = e x p [ -22i ( 2/P { 2 in 2 ((X1) = exp[-2 n 2(rd /p )] 7- -

(A7)

Other statistical models give similar results. For a ther-
mal Lorentzian line, we obtain

X (1+ 2n 2 I ) + exp(-7rTd2II 2)} (B5)

[= s 2 j +[+ [ Jexp(2 rd/Tc ),

which, to first order in rclrp, is

(77) - + expp -2 rd/r |)
Tp

(A8)

(A9)

and which, in general, looks much like Eq. (A6). And for a
thermal Gaussain line, we find

(X) = a-erf( r) + exp(-7rid 2 /rc 2 )
I- 1 C

--- [1 - exp(-7sr 21rC2)],
or rp2

which, to first order in 7-/rp, becomes

(77) - - + exp(-7rrd I/C2)
I-p

(A10)

which also looks similar to the other curves. The Gaussian
shape deviates, of course, from the simple exponentials ob-
tained for the Lorentzian lines, but the limiting cases are as
expected, with the 4 having its origins in the definitions of
T, and rp.

APPENDIX B: THE INCLUSION OF PULSE-
SHAPE EFFECTS

We will assume a Gaussian pulse shape:

A(t) = (4n2) exp[-2 In 2(t 2 /rp 2)], (Bi)

where Tp is the FWHM of the intensity. A(t) is normalized
so that

which also simplifies when T, << rp:

2 In 2 (2) exp[-2 in 2(rd 2/p 2 )] + exp(-rTd 2 /c 2 ).

(B6)

The fourth-order theory for a thermal Lorentzian line
using a hyperbolic-secant-squared pulse shape results in a
diffraction efficiency:

-T CrdT/Tp cosh(Trd/rp) - sinh(PTd/ T)

TP L sinhl( Prd/rp) I
+ exp(-2 I rd/-c ) 

where A = 1.7627.

(B7)
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