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Subharmonic resonances in higher-order collision-enhanced
wave mixing in a sodium-seeded flame
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Using four-, six-, and eight-wave-mixing geometries, we observe subharmonic resonances in collision-enhanced
spectra in a sodium-seeded hydrogen-air flame. Appearing at high intensity, these resonances occur at ±1/2, t1/3,
±1/4, and +1/5 times the frequency of the ground-state hyperfine splitting whf,. We argue that these resonances
result from higher-order processes, specifically X(n), where n 2 5. In particular, to describe the resonances at +Whf8/

5, at least X(13) is required. These high-order collision-enhanced effects are true perturbative nonlinearities and not
sequential four-wave mixing processes.

Collisions can dephase quantum-mechanical ampli-
tudes that ordinarily interfere destructively, thus gen-
erating otherwise forbidden resonances in nonlinear-
optical processes.1 Examples of such effects include
collision-induced population gratings, coherences be-
tween unpopulated excited states, and collision-en-
hanced coherences between equally populated ground
electronic states, all of which have been predicted and
observed in four-wave mixing (4WM) experiments in
atomic gases.1-4 In this Letter we report the observa-
tion of collision-enhanced ground-state (Zeeman and
hyperfine) resonances in a sodium-seeded hydrogen-
air flame using high-resolution pulsed lasers. In non-
degenerate 4WM experiments in this flame, we find
that, at high intensities, additional spectral lines ap-
pear at the frequency differences ±cohfs/2, where WUhf is
the ground-state hyperfine splitting, 0.059 cm-'.
These subharmonic resonances appear to be due to
higher-order wave-mixing processes. To verify this,
we have performed additional experiments using N-
wave-mixing (NWM) beam geometries, where N = 6
and 8 (see Fig. la), that eliminate lower-order effects
but that permit higher-order (N + 2, N + 4,... .) ef-
fects. These experiments reveal subharmonics at +1/
2, +1/3, +1/4, and +1/5 of the hyperfine splitting, the
last of which requires a nonlinear susceptibility of
order at least as high as x(13) for its explanation.
While higher-order wave mixing is not new,5 we be-
lieve that this is the first observation of collision-
enhanced higher-order wave mixing.

A theory of collision-enhanced higher-order wave
mixing was recently presented by Agarwal and
Nayak,6 who used a continued-fraction approach for a
two-level system. This work predicted fractional res-
onances at the subharmonics of the Rabi frequency
and has recently been extended to a three-level sys-
tem7 to predict subharmonic resonances between the
two ground electronic states. Standard diagrammatic
perturbation theory also predicts subharmonics in
higher-order wave-mixing processes (see Fig. lb), and
we have used a diagrammatic perturbation-theory ap-
proach 8 to derive theoretical expressions for collisioll-
enhanced 6WM that predicts subharmonic reso-
nances.

In our experiments, two separately pulse-amplified,
single-mode, cw dye lasers provide the -590-nm light
necessary to nearly excite the D1 line of sodium. Pulse
amplification involves two separate three-stage, sin-
gle-axial-mode Nd:YAG-pumped dye cells. The re-
sulting 2-mJ, 20-nsec temporally Gaussian pulses have
linewidths of <60 MHz. We split one of these beams
into two pulses of approximately equal energy, and we
label the two pulses by the frequencies and k vectors
(w1, ki) and (wi, kl'), respectively. The frequency of
the other beam, labeled by (W2, k2 ), is tunable. All
three beams propagate, unfocused, into an approxi-
mately stoichiometric hydrogen-air flame seeded with
sodium. We use a nonplanar 4WM geometry, in
which the four beams of the interaction (three input
beams plus the signal beam) appear as the corners of a
square if observed end-on. In this configuration, both
beams at frequency w, are polarized vertically, while
the beam at frequency W2 is polarized horizontally.
The 6WM and 8WM geometries are planar, having the
k-vector conservation equations ksig = 2(k1 - k2 ) + k1'
and ksig = 3(k1 - k2 ) + k1', respectively (see Fig. la).
In both of these geometries, the beam polarizations are
the same as in the 4WM arrangement. All geometries
involve angles of -3° between k1 and k2. Each beam's
wavelength is about 2 cm-1 less than the D1 resonance
frequency. Beam diameters at the flame are 5 mm,
and the interaction length is limited by the flame
thickness, about 2 mm. For 4WM experiments, the
sodium concentration in the flame is of the order of 20
parts in 106 (ppm), while for 6WM and 8WM phase-
matching experiments this value is 200 ppm (_1015
cm-3). We detect the wave-mixing signal energy with
a photomultiplier tube and use a microcomputer for
data aquisition and storage. The signal energy is nor-
malized by an appropriate product of input laser ener-
gies on a shot-by-shot basis and then averaged for as
many as 40 laser pulses for each data point. All spec-
tra are necessarily collision enhanced because popula-
tion densities of all ground electronic sublevels are
equal.

Using the 4WM geometry and working at relatively
low intensity (300 W/cm2 per beam at the flame), we
obtain the collision-enhanced 4WM spectrum shown
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Fig. 1. a, 6WM and 8WM beam geometries using small-
angle planar phase matching. A planar 4WM geometry is
also shown for reference. These higher-order geometries
exclude lower-order wave-mixing signals. b, Energy-level
diagram for 6WM showing a four-photon [2(w, - C2)] sub-
harmonic resonance. The 3w, - 2 W2 process requires a
6WM geometry, while the 2w1 - 2 W2 + W2 process is phase
matched in 4WM geometries.

in Fig. 2a, which shows the Zeeman resonance (at 6 - w(
- W2 = 0) and the hyperfine resonances at (6 = +0.06
cm-1). This spectrum agrees quite well with the theo-
retical and experimental spectra of Rothberg and
Bloembergen 3 for sodium in a heat-pipe oven. In Fig.
2b, the intensity is higher (20 kW/cm2 per beam), and
we see some saturation broadening of the 4WM spec-
trum. In addition, however, new spectral features are
present at frequencies of about one half of the hyper-
fine resonance frequencies. There does not appear to
be a 4WM explanation for these subharmonic reso-
nances. Instead, we believe that the subharmonic res-
onances are due to collision-enhanced higher-order
wave mixing.

To see that such an explanation is possible, we ob-
serve that, in general, a phase-matched NWM geome-
try is automatically phase matched for higher-order
processes. Such a higher-order process can be con-
structed by adding and subtracting an input frequen-
cy from the signal-frequency expression and adding
and subtracting the corresponding k vector from the
signal k-vector expression. This creates a phase-
matched (N + 2) WM process. Arbitrarily high-order
processes can be obtained by adding and subtracting
additional input frequencies and k vectors. For ex-
ample, in the 2w, - W2 4WM geometry, the 6WM
process [2(w, - W2)] + W2 and 8WM process [2(w, - W2)]

+ W2 -w 1 + w, can occur, both having resonances at
2(w1 - W2) = + W

0hfs, i.e., wi - C02 = +Whfs/2. Of course,
even higher-order processes, having subharmonic res-

onances at +whf 5/m, where m = 3,4,.. . , are also possi-
ble. Specifically, the 1OWM and 12WM processes,
[3(w1 - W2)I + W2 - W1 + W2 and [(3(w1 - W2)I + 2(w2 -

wl) + w1, exhibit +Whfs/3 subharmonics. 14WM and
16WM processes exhibit +Whfs/4 subharmonics, etc.

Testing this hypothesis by using higher intensities,
where higher-order wave mixing might be expected to
increase further in strength relative to 4WM, fails,
however, because the broadening increases also,
smearing out the entire spectrum. Instead, we use a
6WM geometry, which eliminates-by phase match-
ing-all 4WM contributions to the spectrum. Raj et
al. have used a similar method in induced-grating ex-
periments.9 It is not difficult to find such a geometry,
and the geometry that we chose is shown in Fig. 1. It
is phase matched for processes of the form 3o1 - 2CO2,
but it has difference-frequency resonances similar to
those of the 6WM process [2(w1 - W2)] + W2 and the
8WM process [2(w1 - W2)] + W2 - w1 + wi. Both of
these last-named processes are automatically phase
matched in 2w1 - W2 4WM experiments. On the other
hand, this 6WM geometry is not phase matched for
2w, - W2 4WM processes; thus it allows us to observe
higher-order wave-mixing effects that appear in 4WM
spectra, unobscured by the generally stronger 4WM
effects.

Figure 3a shows a typical experimental 6WM geom-
etry (3w, - 2w2 ) spectrum, acquired using 7 kW/cm 2 in
each of the three input beams. The central compo-
nent, a Zeeman resonance at 6 = 0, is artificially atten-
uated by a factor of 50 by using neutral-density filters
to avoid saturating the detection electronics. The
four-photon-resonant subharmonic resonances are
now quite clearly evident at 6 = +Whf5/2 = +0.03 cm-'.
The two-photon-resonant hyperfine components are
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Fig. 2. a, 4WM spectrum of collision-enhanced Zeeman (w,
- W2 = 0) and hyperfine (W1 - = =Whfs = ±0.06 cm-')
resonances in sodium in a flame at low laser intensity. b,
Same as a, except that much higher intensities illuminate
the flame (20 kW/cm2 peak per beam). Observe the addi-
tional subharmonic spectral components at ±0.03 cm-'.
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Fig. 3. a, Spectrum of collision-enhanced resonances in
sodium in a flame obtained using a 6WM geometry (3 w, -

2(02, in lowest order). The phase-matching geometry shown
in Fig. 1 limits the signal to six- and higher-order wave-
mixing while retaining the same difference-frequency reso-
nances that occur in 4WM geometries. Note the strong
Zeeman resonance at zero frequency difference, the sharp
four-photon subharmonic resonances at ±0.03 cm-i (labeled
2), and the weak two-photon hyperfine resonances at ±0.06
cmi1 (labeled 1). Also observe the small dips at ±0.02 cm-'
(labeled 3), which are probably due to six-photon resonances
at ±02hf,/3. The small constant background is due to scat-
tered light and is not a nonlinear-optical effect. b, Spec-
trum obtained using an 8WM geometry (4ci - 302). Ob-
serve the subharmonics at ±1/2, ±1/3, ±1/4, and ±1/5 of the
hyperfine splitting (labeled 2, 3, 4, and 5, respectively). The
subharmonics at wIhf,/5 are due to at least 14WM.

also present, but weak, at ( = +WhfS = +0.06 cm-'. In
addition, careful observation at 6 = +COhfS/3 reveals
dips in the wings of the Zeeman resonance line, indi-
cating the presence of 8WM or higher-order processes.

We can rule out as a cause of this spectrum sequen-
tial 4WM processes, that is, 4WM with the signal
beam acting as the input beam to another 4WM pro-
cess, because at least one of the required 4WM pro-
cesses is not phase matched. In addition, sequential
processes do not yield subharmonics.

The use of an 8WM phase-matching geometry re-
veals additional subharmonics. Figure 3b shows a
typical spectrum. Observe again the strong central
Zeeman component. Note that the two-photon hy-
perfine resonance at ( = +Whf, is now extremely weak,
while the 6 = +whfE/2 subharmonics remain strong.
The ( = +Whf,/3 = +0.02 cm-1 subharmonics now ap-
pear dispersive in shape, and new subharmonics now
appear at ( = +Whfs/4 = +0.015 cm-' and ( = +Whfs/5 =

+0.012 cm-1 . While 8WM processes can accommo-
date +Whfs/2 and +Whfs/3 subharmonics, at least 1OWM
is required for the +Whfs/4 subharmonic, and 14WM is
the minimum-wave process that can yield +02hfs/5 sub-
harmonics in our 8WM geometry.

At present, we have determined only the minimum
order of wave mixing required to yield a given subhar-
monic. Selection rules forbid various N-wave pro-
cesses, so that even higher-order wave-mixing process-
es must be invoked to explain some subharmonics.
For example, the +Whf,/2 subharmonics in the 4WM
geometry cannot result from 6WM processes because
sample isotropy requires the 6WM probe and signal
beams to have the same polarization, which carries the
selection rule, AF = 0. 8WM processes, on the other
hand, are not forbidden and can yield this resonance.
Selection rules for 4WM processes have been worked
out by Rothberg and Bloembergen,3 and we are at
present calculating selection rules for higher-order hy-
perfine and Zeeman resonances. Experiments in a
magnetic field, currently under way, should confirm
the selection rules involved, for both hyperfine and
Zeeman subharmonics. We are, however, at the limit
of applicability of the perturbative expansion for X,
and it will be of interest to compare these spectra with
predictions from high-intensity theories, such as that
of Agarwal.7
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