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measurement in uniaxial crystals

Rick Trebino

Noncollinear second-harmonic-generation (SHG) processes involving an unfocused laser beam and its scat-
tered radiation can act to produce one or more cones of phase-matched second harmonic, resulting in rings
on an observation screen. We calculate expressions for the ring parameters (center and radius) for types
I and II uniaxial crystals in terms of the crystal indices of refraction and geometry. Measurement of the ring
parameters for several crystal tilt angles can yield very accurate relative values for the indices of refraction
of a uniaxial SHG crystal. A method for the automatic maintenance of optimum SHG which does not re-
quire the placement of optics in the beam is also suggested.

1. Introduction

In addition to the well-known collinear phase-
matching directions in nonlinear optical crystals, there
can be in general a wide range of phase-matched non-
collinear second-harmonic-generation (SHG) processes
for arbitrary propagation directions in the same crys-
tals.1'2 Such processes can involve the k vector of the
main (unfocused) fundamental beam mixing vectorially
with a (scattered) off-axis fundamental wave to yield,
in a phase-matched manner, a relatively strong sec-
ond-harmonic wave. Many scattered wave directions
yielding phase-matched SHG usually exist, giving rise
to interesting ring-shaped patterns near the spot of the
main beam on an observation screen. For example, in
type II SHG, as many as three off-center rings can be
observed around the main beam spot. Observation and
correct interpretation of these rings were first reported
by Giordmaine who treated only the special case of a
negatively birefringent type I crystal and hence ob-
served only one ring.3

When the main laser beam propagates within a few
degrees of, but not exactly in, the direction required for
collinear phase-matching, these rings can be as bright
as or even brighter than the unphase-matched second-
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harmonic spot produced by the main beam, even in high
quality crystals in which very little scattering occurs.
Consider that

P(2co) = P1(W0)P2(W0), (1)

where qi is the second-harmonic-power-generation ef-
ficiency. For the unphase-matched collinear interac-
tion, Pl(wo) and P2 (co0 ) are large, but q is very small.
For phase-matched noncollinear processes involving one
k vector contributed by the main beam plus one scat-
tered low intensity k vector, P,(o) and q will be large,
but P2(w0) will be small yielding, conceivably, a com-
parable P(2wo).

This note details an examination of these processes
in birefringent uniaxial crystals. A first-order analysis
yields all the salient features of the phenomenon and
indicates the off-center ringlike structure of the locus
of phase-matched second-harmonic propagation di-
rections. The angular radii of these rings provide a very
sensitive measure of the phase-mismatch, implying that
measurements of ring centers and radii may be used for
extremely precise relative determinations of uniaxial
SHG crystal indices of refraction. A second-order
calculation is then done for use in such determinations.
These results are also applicable to automatic alignment
schemes for SHG optimization.

II. First-Order Calculations
Consider first a SHG crystal which has approximately

zero birefringence (ne n) with n(wo) > n(2c 0 ). (This
is somewhat unphysical but serves as a simple illustra-
tion.) Collinear phase-matching will not be possible,
but an off-axis scheme for which n(coo) cosca = n (2wo)
will be phase-matched (see Fig. 1). Hence a cone of
diverging second-harmonic radiation of angular radius

2090 APPLIED OPTICS / Vol. 20, No. 12 / 15 June 1981



angle by which k2 is rotated about the z axis out of the
x-z plane (see Fig. 2), nk (2co0,02) is the index of refrac-
tion of this wave, and 02 is the angle between k2 and the
c axis:

=2 .6
COS02 = k 

I k 21V16

= cosOo cosa ± sin~o sina cosfl.

(5)

(6)
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Fig. 1. ko and k 1 are fundamental beam k vectors. k 2 is the second
harmonic. (a) Collinear process is not phase-matched. (b) Non-
collinear process in which ko is the main laser beam, k1 is a scattered
off-axis fundamental wave, and k 2 is the phase-matched off-axis

second-harmonic k vector.

A
C

Referring to Fig. 1(b), the required scattered funda-
mental wave must propagate at an angle of approxi-
mately 2cv to the fundamental in the plane of ko and k2,
so that its angle with respect to the c axis will be given
by

costi - cosOo cos2a + sinO0 sin2a cos/3. (7)

The approximate phase-matching condition (valid for
type I or II SHG) is then

- [nj(wo,Oo) + nj(o,O)] cosa = nk(2cO0,02), (8)

where nj (wo,) is the index of refraction of the scattered
fundamental wave.

Each extraordinary index of refraction required in
Eq. (8) can be approximated to first order in a about its
value at 0 = 00 using

ne(co,O) = n-' -[n 2(w) - n 2 (W)J cos20J-1/2

A
z

Fig. 2. Crystal and k vector geometry. c lies in the x-z plane at angle
00 to the z axis. Direction of k2 is obtained by rotating i by a small
angle a about the y axis and then rotating the obtained vector further

by an angle /3 about the z axis.

a will surround the main beam. The case n(wo) <
n (2wo) would require cosa to be larger than unity, and
hence no analogous solutions will exist.

Now consider a fundamental beam propagating with
k vector

ko = - ni (oo)i
XS

(2)

through a birefringent uniaxial crystal whose c axis is
defined by the unit vector

c = cosboi + sinoi, (3)

where X0 is the fundamental wave free space wave-
length, o is the propagation angle with respect to the
c axis, and n (wo0,00) is the (ordinary or extraordinary)
index of refraction of the crystal at the above frequency
and propagation direction. An off-axis second-har-
monic k vector will be given by

k2 = - n (2wo,02) (sina cosfli + sina sinfl? + cosai), (4)

2 i(

where (x is the angle between ko (or z ) and k2, 0 is the

(9)

for co = coo or 2coo, where n 0(c) and ne (o) are the ordi-
nary and extraordinary indices of refraction of the
crystal at frequency co, and 0 is the angle of propagation
with respect to the c axis. Second-order terms in a will
be small relative to the 1/2a2 term contributed by the
cosa factor in Eq. (8). The results for ne(coo,01) and
nfe(2W0,02) are

ne(cooOl) ne(cOo) + 2A 1a cos3,

ne(2w0,0 2) n(2w0,30o) + A2 a cost,

(10)

(11)

where
I

Al = Al(oo,Oo) = - bjn3(wo,Oo) sin200,
2

1
A2 = A2(2wo,Oo) = - b2n3(2wo,0o) sin200,

2 

b- n 2 (zo) -n 2(Wo},

-- n (2w)- n 2(2wo).

(12)

(13)

(14)

(15)

Clearly it is not necessary to expand ni (wo,00), and all
ordinary indices of refraction are independent of angle.
In the following analysis, nj (wooj) and nk (2wo, 0o) will
always be expanded as in Eqs. (10) and (11), but it will
be understood that Al will vanish if the corresponding
wave is ordinary.

Substitution of Eqs. (10) and (11) into the phase-
matching condition [Eq. (8)], keeping the second-order
term in a contributed by cosa only, yields an equation
of the form

a2 - 2aea cosf + a 2 - a = Q. (16)

This is the equation for a cone of rays (a ring if viewed
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on a screen, see Fig. 3) of angular radius caR about a
central angle ac with respect to in the x-z plane.
(This central ray will be tilted toward the c axis if a >
O and away if a, < 0.) The ring center and radius will
be

a, = (A1-A2)/n,

= /A,-A 2 )2 2An
OVR = | r n -

(17)

(18)

where

n = [ni(wooo) + nj(wo,6O)],
2

An I ni(w~o,Oo) + nj(.Jo,Oo)] - flk(2 w,Oo).
2A

Sc 1

A

z

Fig. 3. Angular polar coordinates a and 3 and a cone of rays centered
about a ray at an angle ac from the z axis (toward the c axis) with

angular radius aR-

(19)

(20)

The quantity An is the index-mismatch of the collinear
process. Note that for positive values of An, a ring will
exist containing the main beam (ko); for An = 0 the
collinear process will be phase-matched, but the re-
sulting very intense spot is only part of a ring resulting
from phase-matched not-necessarily-collinear pro-
cesses; for An < 0 the ring will not contain the main
beam, and for An sufficiently negative, the ring radius
will approach zero, beyond which no ring appears. By
smoothly varying the tilt angle of a crystal, this evolu-
tion of ring size and position is easily seen and may be
used to attain and maintain index matching.

Table 1. Noncollinear Phase-Matching Processes

PolarizationZI
Type of

Phase-matching
Main
Beam

Scattered
Fundamental

Second
Harmonic

Formulas for Ring Centers (ac)

and Ring Radii (aR)

(to first order)

: I O O ~~~~~~~~~~~-A2 Ai AI 0 0 E ac n i aR ( + 2 n

i E O ac n ; a = i ( _)~l-A2AI-A + 2An l

II 0 E E aSA-A A-A\ 2C n n 

II ~E 0 E -Ac- n R \n/n

Polarization Formulas for Ring Centers (a )
and Ring Radii (a )

Type of Main Scattered Second R
Phase-matching Beam Fundamental Harmonic (to first order)

I ~ E E 0 a -1i aR ( )

> II O E O ~~~~~~~~~c n R n ) n

II 0 E O a= I; ( 

II E 0 0 a= 0_A

Type II rings will exist if both
fundamental polarizations are present and if sufficient birefringence for
Type II phase-matching exists. Ring intensity will depend on the value of
deff and the amount of scattered radiation present in the required directions.

(a) Processes in negatively birefringent crystals (e.g. CDA,KDP,LiNbO3,LiIO3);
(b) Processes in positively birefringent crystals (e.g., CdGeAs2, CdSe).
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Fig. 4. Predicted ring patterns of the two type II (0.5 3 2 -gm) rings obtained with 1.06-pm radiation in a type II KD*P crystal. The spot at
the origin of each coordinate system corresponds to the unscattered laser beam. The crystal c axis intersects the x axis in each figure at the
value 0 o. The calculated phase-matching angle is 0o = 554°. (The index of refraction data used were taken from Ref. 4.) The polarization

of the scattered light giving rise to each ring is indicated by E or 0: (a) An >> 0; (b) An > 0; (c) An slightly less than 0; (d) An < 0.

For a type I SHG crystal with insufficient birefrin-
gence for type II phase-matching or for which only one
polarization of fundamental radiation is present, a ring
with the above characteristics will be observed. A far
more interesting crystal, however, is a type II SHG
crystal. For such a crystal, two type II processes exist,
each giving rise to a separate ring, and, in addition, a

type I process will produce an additional ring (see Table
I). Thus for type II SHG crystals, three rings may be
observed. The intensity of the type I ring will be de-
pendent on the value of deff for the type I process re-
sponsible for it, which may be very low in a crystal op-
timized for type II SHG.
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III. Comparison with Experiment

A CD*A crystal cut for type I 90' phase-matching of
(ordinary) 1.06-ptm radiation at a temperature of 1060C
was employed at room temperature. Approximately
8 MW/cm 2 of highly collimated fundamental radiation

with ordinary polarization propagating at an angle of
900 with respect to the c axis produced a 0.532-pum ring
with extraordinary polarization which was centered (to
within 0.05°) on the main beam with an angular radius
(external to the crystal) of 2.50 + 0.10. For CD*A at
room temperature, ne (0.532 gm) = 1.5495 and n0 (1.06

_y
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Fig. 5. Photographs of the two type II(0.532-gm) rings obtained with 1.06-um radiation in a type I KD*P crystal. The spot in each figure
is that of the unscattered laser beam. Values of the crystal tilt angles are approximately those in the corresponding figures of Fig. 4. The
very small predicted ring in Fig. 4(c) is not evident in Fig. 5(c) probably because of obscuration by the larger ring and main beam spot. The

type I ring in each case was larger than the camera frame and too dim to photograph.
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ji) = 1.5503, and for the above geometry A 1 = A2 = 0
so that e = 0, and, corrected for refraction at the
crystal exit face, theory predicts e~t = 2.52° in agree-
ment with experiment.

A type II KD*P crystal was also studied at the above
wavelengths, and all three predicted rings were ob-
served. Near the phase-matching angle for collinear
type II SHG, the type I ring is so severely phase-mis-
matched (An is large) that the ring radius is of the order
of 70 (internal to the crystal), and, hence, it is difficult
to observe because scattering this far off axis is very
weak. Furthermore, deff for this ring is much smaller
than that for the type II processes, and, as a result, the
large type I ring was very dim. The theoretically ex-
pected type II rings are shown in Fig. 4, and photo-
graphs of the two type II rings showing their evolution
(as a function of 00, the crystal tilt angle) are shown in
Fig. 5. Qualitative agreement with the theoretically
calculated rings is thus obtained.

IV. Application to Index of Refraction Measurement

The values of the ring parameters are extremely
sensitive measures of the index-mismatch. When 00 is
within 10 or so of the collinear phase-matching angle,
the index-mismatch An is -0.0003 or less. This means
that using index of refraction data accurate to five digits
(e.g., ne = 1.4588), only one-digit accuracy is obtained
in aR [when the An term dominates in Eq. (18)-which
is usually the case], which can be measured to as many
as three digits. Thus it is possible that the expressions
for the ring parameters ( and aR for the one, two, or
three rings observed) can be inverted to obtain ex-
pressions for the three or four relevant indices of re-
fraction of a uniaxial SHG crystal, which could be very
accurate.

Several considerations must be kept in mind, how-
ever, before attempting such a measurement. First,
errors in the measured values of the ring radii result in
much smaller errors in the derived values of the indices
of refraction, while errors in the measured values of the
ring centers are magnified. This can be seen by noting
that, if nj is one of the crystal indices of refraction,
bnll/baR naR << 1, while Onl/acr >> 1. Thus mea-
sured values of aR only are useful for index of refraction
determination. An experiment using this technique
would then involve measurement of many values of aR
for different crystal tilt angles 6o, yielding statistical
data which may be curve-fit to obtain the required
crystal parameters.

While the statistical nature of the above experiment
implies even greater precision, the technique suffers
from the fundamental limitation that only relative
values of the indices of refraction are obtainable. For
example, consider a type II positively birefringent
crystal [for which n0 (w0 ), ne(wo), and n(2cco) appear
in the ring parameter expressions]. Equation (18) can
be linearized by writing n (X) = njG)(c) + An1 (co), where
ni°)(w) is an approximate known value of nl(c), and
Anj (c) is small, so that only first-order terms in
An0(w0 ), Ane(coo), and An0 (2w0) must be retained.
Two linearly independent equations may be obtained

by measuring two ring radii, but three or more mea-
surements yield dependent equations and only serve to
better pin down ratios or differences of indices of re-
fraction. Thus accurate absolute information is not
available.

The relative information that can be obtained will be
very accurate and, in some cases, very useful. The
temperature dependence of the index mismatch can be
obtained to great accuracy easily. Also knowledge of
one of the indices of refraction at one frequency in an
SHG process will generally be sufficient to provide all
the remaining information.

Clearly, more precise expressions for the ring pa-
rameters than those given in the preceding largely
physical argument will be necessary to achieve signifi-
cant accuracy. Second-order terms in a must be in-
cluded in all quantities, the value of 01 previously given
by Eq. (7)] must be improved, and Poynting vector
walkoff must be considered. The next section presents
a derivation of the ring parameters in which the above
effects are included.

V. Second-Order Calculation

Writing k1 as that vector which satisfies the phase-
matching condition exactly (i.e., k1 = k2- ko) and using
Eqs. (2)-(6), we find that

k12 = (T) {nk(2WO,02) sin2 a

+ Ink (2wo,02) cosa - nj (woOo)I } .

But k 1 2 can also be written

1k11
2

= (a-)2 l2(W0,01),

(21)

(22)

where 01, the angle between k1 and the c axis, satisfies
the equation

= kil 

= coso + -

(23)

nk(2w0,0o) sinO0

1
a cos#

nk(2cwo) - n(coo,00)
2

2A2 n (wo,0 o) sinO _

[2nk(2wo,O) - n (Co,0O)]2 2
cosT

2n2(2woOo) coso2
[2n1(2'o,o) - n(WOo)]2 (24)

Setting the two expressions for k112 equal, we obtain
an exact expression that holds for any SHG process,
type I or II:

4n2(2WO,02) + n?(wo,Oo) - 4ni(woOo)nk(2 Wo,0 2) cosa = n0(joO).
(25)

Equation (25) along with Eqs. (6), (9), and (24) yields
an exact implicit function for the locus of phase-
matched second-harmonic k vectors in terms of the
angular polar coordinates a and .

Working to second order in a, we find using Eqs. (6)
and (9)
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nk (2Co0,02) = n1 (2cwjoo) + A 2 a cost + 2 B2 a 2 cos2
# + -C 2 a2 ,

2 2

(26)

where A2 is given by Eq. (13) and

B2 = b2ng(2w0 ,Oo) sin2Oojl + 3b2n'(2wo,Oo) cos2 00], (27)

C2 = -b2n3(2wo,00) cos2 00, (28)

if k = e. Otherwise, A2 = B 2 = C2 = 0, as before.
Similarly,

n0(wjoOl) nf(tjo) + Ala cosfl + Ala2 COS2fl + COa2, (29)

where
nk(2w o0o)n4(W0 o)'A,= 2b, --1 2o(02 nk(2oo) - ni (o,Oc) n

=4 nk(
2wo,Oo)ne(oo Oo) Al (31)

2nk(2wo,00) -ni(@o,0o)

B1 4b, ne(2woOo)n (oto) sin2 60
[2nk(2wo,Oo) - ni(Wo,Oo)]2

+ 4b2 n2(2wo,0o)n'(Wo,00) 220
[2nk(2jo) - n(0o,Oo)] 2

ni(woO )n4(Wo,0o)
2blA [2nk(2wo00) - ni(coo)] 2 sin2O0 (32)

C -4b2 nl(2wo,0o)n(oo,0o)
[2nk (2 woOo) - ni (o,Oo)] 2 c

if j e. If j = 0,thenA1 =B1 = C1 = 0. Notethatthis
expansion does not reduce exactly in the first order to
Eq. (10). This is because the small birefringence ap-
proximation made in Eq. (7) is not made in the more
precise expression represented by Eqs. (29)-(33). It
should also be mentioned that significant simplification
in these expressions can result if terms second order and
higher in the birefringence parameters b and b2 are
dropped; most applications should allow this simplifi-
cation especially when 0 900.

Substitution of Eqs. (26) and (29) into Eq. (25) results
in the equation

Ua2 + a2 cos23 - 2Wa cos + X = 0, (34)

where

U = 2 ni(wo,0o)nk(2woOso) - 2C2n(w,Oo) + 4C2nk(2w0,00) -C,

(35)

V = 4A + 4B2nk (2cwOo) - 2B2n (Oo) - 1 , (36)

W = 2A2n(co0 ,o) - 4A2nk(2woOo) + A1 , (37)
2

X = [2nk(2o,00) - n(w,00)]2 - 0(wjo). (38)

Equation (34) is the equation of an elliptical cone of rays
giving rise to an elliptical pattern at the exit face of the
crystal with center coordinate ac and semimajor axes
a, and ay, where

ac ( vW (39)

(UVU+ Vag2- k 141 + ~wV~ X), (40)

a2(.W(U +V X) (41)

The problem of displacement due to Poynting vector
walkoff can be treated by noting that the second-har-
monic radiation created just before the exit face of the
crystal will experience negligible displacement. Thus
measurement of the elliptical ring parameters should
be performed with as thin a beam as possible looking
only at the rightmost (or leftmost depending on the
direction of the walkoff) edge of the pattern.

Any practical arrangement for angle measurement
in this technique will involve observing the patterns on
a distant viewing screen and taking into account the
effect of refraction at the exit face of the crystal. Dif-
ferent crystal cuts will of course affect the patterns
differently, and it is suggested that a vidicon array in
combination with a computer be used for maximum
ease and precision in determining ring parameters. In
view of the complexity of the expressions for these pa-
rameters and the possibility of obtaining statistical data
using many values of the crystal tilt angle, a computer
curve-fitting program at the very least is required to
extract the parameters of interest from the measured
quantities.

VI. Application to SHG Optimization

An additional application of these rings is to the op-
timization of SHG by hand or by machine. Because the
rings have known radii and are tangent to the main
beam spot when the collinear phase-matching condition
is achieved, their size and/or position could be moni-
tored and a signal fed back to the crystal mount posi-
tioners or oven to maintain maximum SHG. The ad-
vantage of such a technique is that no additional optics
need be placed in the usually intense main beam, thus
precluding (1) the possibility of damage to such optics,
(2) phase front distortion in the second-harmonic beam
by the aforementioned optics, and (3) any loss in sec-
ond-harmonic intensity. It is possible, however, that
scattering of the intense phase-matched second-har-
monic may obscure the relatively weak ring(s). Use of
this optimization method would be facilitated by or-
ienting the crystal with its higher quality regions near
the exit face (rather than the entrance face) to minimize
this scattering.
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