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Determining error bars in measurements of
ultrashort laser pulses
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We present a simple and automatic method for determining the uncertainty in the retrieved intensity and
phase versus time (and frequency) due to noise in a frequency-resolved optical-gating trace, independent of
noise source. It uses the ‘‘bootstrap’’ statistical method and also yields an automated method for phase blank-
ing (omitting the phase when the intensity is too low to determine it). © 2003 Optical Society of America
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1. WHY ERROR BARS ARE NOT
TYPICALLY REPORTED
How does one place error bars on a measurement of an
ultrashort laser pulse? For decades, about the only
available measure of an ultrashort laser pulse was the au-
tocorrelation. Unfortunately, an autocorrelation trace
typically corresponds to many, often quite different, inten-
sities, so even a perfect noise-free measurement of the au-
tocorrelation results in a large, and unknown, uncer-
tainty in the shape of the pulse’s intensity versus time.1–3

In addition, the autocorrelation yields no phase-versus-
time information at all. As a result, it is not possible to
determine a pulse intensity or phase from an autocorre-
lation. Even when additional information, such as the
spectrum, is included, the autocorrelation measurements
typically correspond to many significantly different inten-
sities and phases, even in the absence of noise.4 Such
methods thus have a type of unquantifiable ‘‘internal
noise’’ that occurs even in the absence of measurement er-
ror, and it makes no sense to attempt to place error bars
on such reconstructions of the pulse’s intensity and phase.

Of course, it is now possible to measure a pulse’s inten-
sity and phase versus time (and frequency) essentially
unambiguously. The most commonly used method,
frequency-resolved optical gating1 (FROG), retrieves the
full pulse intensity and phase versus time (and frequency)
without the need for any assumptions about the pulse.
And recent advances in the FROG technique have ex-
panded its capabilities significantly. It has been ex-
tended to a wide range of wavelengths, from the IR to the
x-ray, and FROG measurements can now be made with an
extremely simple beam geometry that make it the sim-
plest pulse-measurement technique1 available. FROG’s
cousin, cross-correlation FROG, is now being used to mea-
sure extremely complex pulses, such as ultrabroadband
continuum originating from a microstructured fiber with
a time–bandwidth product in excess of 1000.5,6 And in
addition, with new nonlinearities, cross-correlation FROG
can now measure ultraweak pulses with ,100 photons
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each.7 FROG is also a very accurate technique, with ac-
curacy limited only by the accuracy of the measured trace.
Numerous simulations and experiments have both cor-
roborated this fact.1

But just how accurate is a given FROG measurement of
a pulse? Some indication of the measured-pulse accu-
racy is available from the ‘‘FROG error,’’ the rms differ-
ence between the measured and retrieved FROG traces,
which tells us how well the retrieved pulse’s trace
matches the measured trace (and usually reveals the
presence of systematic error in the measurement). How-
ever, this measurement depends on the trace size, and it
gives no quantitative information regarding the error in
the intensity and phase at a given time or frequency.
Singular-value decomposition-based algorithms provide
an alternative measure of systematic error, but, like the
FROG error, it also tells little about the error in the de-
rived intensity and phase points.8 What FROG, and
pulse measurement, in general, need, is a method for de-
termining the uncertainty in each of the retrieved inten-
sity and phase points, that is, error bars.

Unfortunately, direct computation of error bars in any
experiment involves a tedious, and often questionable, ac-
counting of all the known sources of error. Worse, when
the relationship between the measured data and re-
trieved values is complex, as is the case in FROG, it is not
clear how such sources of error in the data translate to ac-
tual uncertainties in the retrieved values. As a result,
error bars are not often reported in measurements and
are essentially never reported in pulse measurements.

Therefore we present here a simple, robust, and gen-
eral technique for placing error bars on the intensity and
phase retrieved in a FROG measurement. It operates
automatically, makes no assumptions about the pulse or
error, and requires no extra measurements or analysis,
instead operating with only a single measured trace.

A related issue in the measurement of ultrashort pulses
(and measurements of phase, in general) is the tendency
of the phase to become meaningless as the intensity goes
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to zero. This is obvious, but the problem is this: At
what point should we stop plotting the phase? Omitting
phase points for which the intensity is below some thresh-
old is often called ‘‘phase blanking.’’ Usually, in deciding
the threshold for phase blanking, a judgment must be
made, and it is often made based on aesthetics rather
than science.

Here we present an automated method that makes this
decision objectively and appropriately. Once error bars
are determined, the problem of phase blanking is quite
simple: When the phase error exceeds or equals 2p, then
the phase is clearly undetermined, and phase blanking is
appropriate. Note that, once the technique for the deter-
mination of error bars is automated, phase blanking is
also. Moreover, it requires no arbitrary judgments on the
part of the user.

2. BOOTSTRAP METHOD
The technique that solves the phase-blanking and error-
bar problems is the ‘‘bootstrap’’ method, a well-
established statistical resampling tool for determining
uncertainty.9–11 The bootstrap method involves taking
the data set of M points, sampling a new set of M points
from it, with replacement (resulting in some points possi-
bly occurring more than once and others not at all), and
then running the relevant parameter-determination algo-
rithm on this new set of points. This process is then re-
peated numerous times on the data set (generating many
resamplings of M points and hence many computations of
the desired parameters), so that each desired parameter
will be estimated numerous times.

It has been shown that, when the data overdetermine
the parameters (i.e., when there are many more data
points than parameters), the set of parameter values ob-
tained by this procedure approximates the sampling dis-
tribution for the original parameter estimate.10,11 In par-
ticular, the mean and standard deviation of this
distribution are consistent estimators for the measured
parameter and the error bar for that parameter, respec-
tively. This method is called the bootstrap method be-
cause it appears that one is getting something for nothing
(‘‘pulling oneself up by one’s own bootstraps’’), but this is
not the case, and, in fact, the method can be quite compu-
tation intensive. With the use of modern computers,
however, the required computations are not prohibitive,
and the computations we perform require at most a few
minutes on a personal computer. The bootstrap method
has the additional advantage that it is ‘‘nonparametric,’’
that is, it assumes nothing about the distribution of the
noise and parameters.

The bootstrap method is quite general and so has been
successfully applied to a wide range of problems.10,11 In
particular, its application to positron emission
tomography12,13 and single-photon emission computed
tomography12 closely resembles our application, in which
a complex algorithm operates on multidimensional data
to determine the desired quantities.

Applying this approach to ultrashort-pulse measure-
ment simply involves running the FROG retrieval algo-
rithm on approximately 100 resamplings of the measured
FROG trace, tabulating the statistics of the retrieved in-
tensity and phase values obtained during these runs (see
Fig. 1). The mean intensity and phase values for each
time and frequency are then the measured values. More
importantly, the standard deviations yield the error bars.
This works because the FROG trace overdetermines the
pulse, that is, contains many more points than the result-
ing intensity and phase.

To resample the points according to the bootstrap pro-
cedure, we take the original, measured FROG trace and
select, at random and with replacement, a number of
points equal to the original number. This resampling
with replacement allows data points to be selected more
than once, and typically about 2/3 of the points occur at
least once in this new trace. Data points not selected are
simply ignored in the generalized-projections FROG
algorithm1 (in the magnitude replacement step), although
other versions of the FROG algorithm1 can accommodate
duplicate points. Running the algorithm with only a
fraction of the points does not harm its accuracy for this
purpose. Indeed, the degree to which the solution varies
when points are removed is the desired measure of the er-
ror. And, as mentioned above, it has been shown that, in
general, using this procedure, the statistics of the re-
trieved values accurately approximate the actual statis-
tics of the derived parameters,10,11 in this case, the inten-
sity and phase values at the various times (and
frequencies). We then take the resulting mean intensity
(or phase) for each time as the actual intensity (or phase),
and plus or minus one standard deviation at each point as
the uncertainty, although one could use plus or minus
twice or three times the standard deviation depending on
one’s tolerance for error.

A minor point: While we use the means of the boot-
strap retrieved intensities and phases, the retrieved value
for each intensity and phase obtained using only the origi-
nal trace, without bootstrap resampling, can be shown to
be a slightly better estimate than the mean values and
can therefore be used instead. This decision does not af-
fect the bootstrap standard deviations and error bars.

3. DEALING WITH AMBIGUITY
This process involves some subtlety in its application to
pulse measurement, however, because no pulse-
-

Fig. 1. Schematic of the bootstrap process for application to
FROG measurement of ultrashort pulses. Each of the ;100 re-
sampled traces (obtained from a single measured trace as de-
scribed in the text) is run through the FROG algorithm, and the
mean and standard deviation of each point of the retrieved pulse
intensity and phase versus time and frequency is calculated.
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measurement technique actually determines all pulse pa-
rameters. In particular, FROG has what are known as
‘‘trivial ambiguities.’’ These are ambiguities in the pulse
peak intensity, I0 , the absolute phase, f0 (the zeroth-
order term in the temporal- and spectral-phase Taylor se-
ries), and the pulse arrival time, t0 (which is also the first-
order term in the spectral-phase Taylor expansion).
Usually nonmeasurement of the absolute phase and ar-
rival time are advantageous, eliminating the need for te-
dious stabilization of irrelevant path lengths. If, how-
ever, the absolute phase is allowed to float, the phase-
versus-time and phase-versus-frequency curves will float
randomly over the full 2p range in the retrievals required
for application of the bootstrap procedure, yielding large
phase errors, even in the absence of noise in the trace!
Similarly, nonmeasurement of the peak intensity and ar-
rival time will cause excessive errors in the pulse inten-
sity and spectrum. Thus we must carefully fix these pa-
rameters at the same (arbitrary) constants in each
bootstrap retrieval in order to properly apply the boot-
strap method. Indeed, our ability to fix these parameters
provides the ultimate limit on how small a meaningful er-
ror bar may be accurately determined.

Here we only consider polarization-gate FROG (PG
FROG) in order to limit the number of ambiguities.
Other versions of FROG (as well as other techniques)
have additional ambiguities to consider. For example,
second-harmonic-generation FROG (SHG FROG) has a
well-known direction-of-time ambiguity. Thus in SHG
FROG, each of the retrieved pulses must have its direc-
tion of time fixed. While we have devised a method for
experimentally removing this ambiguity from SHG FROG
by placing an etalon in the beam,14 it is important that
this ambiguity be considered. There is also a relative-
phase ambiguity in SHG FROG (and other methods) for
well-separated pulses in time and frequency. In this pa-
per, however, we will restrict our attention to the case of
PG FROG and the three undetermined parameters men-
tioned above. We will treat the case of known, and po-
tentially unknown, ambiguities in a future publication;
the method will be a generalization of this approach.

Fortunately, it is easy to remove the trivial ambiguities
before performing bootstrap computations. In order to
fix the delay of the pulse’s arrival time, we simply center
the pulse in time. Specifically, we set the first moment of
the intensity to be zero. The first moment is
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in which I(ti) is the intensity of the pulse at time ti . We
simply shift the pulse so that its first moment is at
t0 5 0.

To account for the other two trivial ambiguities, I0 and
f0 , we simply use

Ê~t ! 5
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, (2)

where the electric field of the pulse is E(t) and E(t0) is
the electric field at the time t0 . This single procedure
not only normalizes the intensity at t0 to unit intensity,
but it also sets the phase at t0 to 0. It is important to
note that this (artificially) removes all uncertainty in the
pulse field at the point at t0 . (One could estimate the un-
certainty in this point by averaging that of its neighbor-
ing points or simply not plotting it, as it is automatically
set to 1.)

4. BOOTSTRAP PROCEDURE IN THE
ABSENCE OF NOISE
A test of (1) our ability to fix these parameters; (2) the
FROG algorithm and technique in general; and (3) the
bootstrap procedure for this application is whether we ob-
tain error bars of zero length in the absence of noise. We
tested our approach using a complex triple pulse with a
phase jump, whose noise-free trace is shown in Fig. 2. To
choose which points are included in bootstrap samples
(and later to add noise to traces), we used the built-in
random-number generator, function random( ), in the
Delphi language and compiled it with the Delphi 5 com-
piler. We then ran the commercial Femtosoft FROG code
(modified to resample the trace 88 times as described
above) on the trace. Figure 3 shows the retrieval of this
pulse for a noise-free, polarization-gate (PG) FROG (the
version of the FROG method that uses the polarization-
gate beam geometry1) trace including error bars.

We defined the intensity error as simply the integrated
error of the intensity over the trace,
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and the intensity-weighted phase error as
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where s i
I and s i

f are the mean intensity and phase stan-
dard deviations at the ith time or frequency, Ii is the in-
tensity at the ith time or frequency, and Imax is the maxi-

Fig. 2. Polarization-gate (PG) FROG trace of the pulse used in
these simulations.
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mum intensity versus time or frequency. We weight the
phase uncertainty by the intensity because the phase and
its uncertainty are meaningless when the intensity is
zero.

With these definitions, the integrated intensity error
for this noise-free trace was 1.8 3 1026, and the
intensity-weighted phase error was 2.7 3 1026 (5.7
3 1026 and 8.7 3 1028, respectively, in frequency).
These error values for this complex pulse and trace are
not just measures of the error due to the bootstrap
method, but are in fact the sum of the errors due to our
normalization procedure, the numerical round-off error of
our personal computer, and the FROG algorithm itself.
The low values achieved above show that all of these pro-
cesses work very well.

5. BOOTSTRAP PROCEDURE IN THE
PRESENCE OF NOISE
Having checked our implementation of the bootstrap
method for traces without noise, we can now place error
bars on the intensity and phase obtained from a trace
with noise. To do this, we added 1% additive noise to
each point in the above trace to simulate experimental
noise. Figure 4 shows the retrieved intensity and phase
of the same theoretical pulse, but now with error bars de-
termined by use of the bootstrap method. The error bars
represent the 61 standard deviation points about the
mean value of each retrieved intensity or phase value for
each time. Note that the resulting intensity errors are of

Fig. 3. Retrieved intensity and phase for the noise-free FROG
trace in Fig. 2. Error bars have been computed with the boot-
strap method as described in the text to determine whether error
bars have zero length in the noise-free case, as required. Solid
curves are the actual intensity and phase. In time, the inte-
grated intensity error was 1.8 3 1026 and the integrated
intensity-weighted phase error was 2.6 3 1026, and in frequency,
these errors were 5.7 3 1026 and 8.7 3 1028, respectively. (In
this and all other plots, error bars smaller than the size of the
data point are omitted.)
the order of 1%, but vary somewhat with intensity. The
phase noise is large in the pulse wings, of course, because
the intensity goes to zero there, and thus the phase there
is meaningless. Note also that ;60% of the actual points
fall within the error range, which indicates that this pro-
cedure is reasonable.

Fig. 4. Retrieved intensity and phase of a theoretical pulse with
1% additive noise introduced numerically to the FROG trace.
The intensity error was 9.3 3 1023 and the phase error was
1.2 3 1022, and in frequency, the errors were 2.5 3 1023 and
3.3 3 1023.

Fig. 5. Retrieved intensity and phase of a theoretical pulse with
a different realization of 1% additive noise. Here the intensity
error was 9.8 3 1023, and the phase error was 1.1 3 1023 (2.3
3 1023 and 3.6 3 1023 in frequency), essentially identical to the
retrieval in Fig. 4.
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How do we know these error bars are correct? First,
the bootstrap method is supported by a vast array of the-
oretical statistical analysis.10,11 While it does fail for
some applications, it is mainly only because too few boot-
strap samples were used. Nevertheless, it is important
to check that its results are reasonable in this application.
This is a bit tricky because there is not currently an es-
tablished method for the determination of error bars for
any pulse-measurement technique!

One test is to generate additional traces using the same
average noise but with a different realization of the noise

Fig. 6. Pulse retrieved from the same FROG trace, but now with
10% additive noise added. The error bars are about an order of
magnitude larger, and the integrated errors are also larger, in
time, 2.2 3 1022 for intensity and 4.5 3 1022 for phase (in fre-
quency, the numbers are 5.9 3 1023 and 1.6 3 1022).

Fig. 7. Error bars with the bootstrap method for an experimen-
tally measured FROG trace.
(a different set of random numbers). Then we can re-
trieve pulses from these new traces and check whether
the distribution of retrieved pulses in this simulation
matches those retrieved from the first set. Figures 4 and
5 show examples of two such retrievals. Both begin with
the same FROG trace, and each uses the same level of
noise, but the random-number generator used a different
seed for each trace. This yields different ‘‘noise,’’ but
with the same magnitude. That the two sets of computed
error bars are nearly identical confirms the validity of the
bootstrap approach.

A second test is to show an increasing uncertainty
when more noise is added to the trace. There should be a
simple monotonic relationship between the computed er-
ror bars and the error added to the FROG trace. As can
be seen from Fig. 6, the error bars in the retrieval are ap-
propriately longer than those in the 1% noise cases.

We have also run the bootstrap method for experimen-
tal FROG data for an 800-nm regeneratively amplified
Ti:sapphire laser pulse that yielded a polarization-gate
FROG trace. The trace exhibited mainly multiplicative
noise, so the retrieved pulse is well defined in the wings
with very low error. The resulting measured pulse and
its error bars are shown in Fig. 7. These error bars are
also quite reasonable.

We have also run this procedure for other noise levels
and types and for a variety of pulses and FROG varia-
tions, and we have found it to yield reasonable results in
all cases.

6. PHASE BLANKING
The bootstrap method also allows us to objectively phase
blank. Figure 8 shows our implementation of phase
blanking. Here we have taken the pulse from Fig. 6 and
applied our phase-blanking technique, which, as men-
tioned previously, involves omitting the phase when its
error bar exceeds 2p in length. The result is much easier
to view, without the mass of meaningless information in
the wings of the pulse in the original. Importantly, this
process is automatic and requires no aesthetic judgments.
The only subtlety remaining to resolve is when (and
whether) to phase unwrap (forcing the phase to be con-
tinuous by adding the appropriate multiple of 2p) and
when not to. We find that phase unwrapping during the
bootstrap procedure is required (whether phase blanking
is desired or not), or else the phase error never exceeds

Fig. 8. Pulse from Fig. 6, but with phase blanking applied.
Note how the removal of the extra (meaningless) phase points
simplifies the plot.
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2p. After the bootstrap procedure, one can phase un-
wrap or not, according to taste.

Phase blanking is especially useful when phase un-
wrapping. In this case, the phase error can be very large
(.2p) and essentially meaningless, even though it ap-
pears to be very small because it is only a tiny fraction of
the full range of the phase. Phase blanking using the
bootstrap approach provides a quantitative method for
determining just how far to plot the phase.

7. CONCLUSIONS
The bootstrap method is a rigorous and general approach
to calculating uncertainty in measurements on ultrashort
laser pulses. It makes no assumptions about the pulse or
the noise on the trace. It is also very accurate, capable of
computing error bars as small as a few millionths. In ad-
dition, it is also relatively fast. It may seem that, be-
cause it requires numerous runs of the FROG algorithm,
it could be quite slow. However, due to advances in com-
puter technology and the FROG algorithm, pulse re-
trieval typically requires from 0.1 s to a few seconds
(rarely more than a minute, even for complex pulses) on a
PC or Macintosh computer. So implementing the boot-
strap procedure should not take too much time in most
cases.

Finally, this process is extremely convenient: It is
completely automated and easily implemented, especially
within the FROG code, and, unlike other error analyses,
does not require a careful analysis of the experimental ap-
paratus. Indeed, it requires only the measured trace and
no additional measurements. And it allows automatic
and objective phase blanking.

ACKNOWLEDGMENTS
The authors gratefully thank Michael Munroe for his code
writing and ideas in the early phases of this work. This
work was supported by the National Science Foundation
(contract ECS-9988706).
REFERENCES
1. R. Trebino, Frequency-Resolved Optical Gating: The Mea-

surement of Ultrashort Laser Pulses (Kluwer Academic,
Boston, Mass., 2002).

2. E. J. Akutowicz, ‘‘On the determination of the phase of a
Fourier integral, I,’’ Trans. Am. Math. Soc. 83, 179–192
(1956).

3. E. J. Akutowicz, ‘‘On the determination of the phase of a
Fourier integral, II,’’ Trans. Am. Math. Soc. 84, 234–238
(1957).

4. J.-H. Chung and A. M. Weiner, ‘‘Ambiguity of ultrashort
pulse shapes retrieved from the intensity autocorrelation
and power spectrum,’’ IEEE J. Sel. Top. Quantum Electron.
7, 656–666 (2001).

5. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P.
Shreenath, R. Trebino, and R. S. Windeler, ‘‘Frequency-
resolved optical gating and single-shot spectral measure-
ments reveal fine structure in microstructure-fiber con-
tinuum,’’ Opt. Lett. 27, 1174–1176 (2002).

6. J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea,
R. Trebino, S. Coen, and R. S. Windeler, ‘‘Cross-correlation
frequency resolved optical gating analysis of broadband
continuum generation in photonic crystal fiber: simula-
tions and experiments,’’ Opt. Express 10, 1215–1221 (2002).

7. J.-Y. Zhang, A. P. Shreenath, M. Kimmel, E. Zeek, R. Tre-
bino, and S. Link, ‘‘Measurement of the intensity and phase
of attojoule femtosecond light pulses using optical-
parametric-amplification cross-correlation frequency-
resolved optical gating,’’ Opt. Express 11, 601–609 (2003).

8. D. J. Kane, F. G. Omenetto, and A. J. Taylor, ‘‘Convergence
test for inversion of frequency-resolved optical gating spec-
trograms,’’ Opt. Lett. 25, 1216–1218 (2000).

9. W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P. Flan-
nery, Numerical Recipes in C: The Art of Scientific Com-
puting (Cambridge University, Cambridge, UK, 1995).

10. B. Efron and R. J. Tibshirani, eds., An Introduction to the
Bootstrap (CRC, Boca Raton, Fla., 1993).

11. A. C. Davison and D. V. Hinkley, Bootstrap Methods and
Their Application (Cambridge University, Cambridge, UK,
1997).

12. I. Buvat, ‘‘A non-paramteric bootstrap approach for analys-
ing the statistical properties of SPECT and PET images,’’
Phys. Med. Biol. 47, 1671–1775 (2002).

13. M. Dahlbom, ‘‘Estimation of image noise in PET using the
bootstrap method,’’ IEEE Trans. Nucl. Sci. 49, 2062–2066
(2002).

14. E. Zeek, A. P. Shreenath, P. O’Shea, M. Kimmel, and R. Tre-
bino, ‘‘Simultaneous automatic calibration and direction-of-
time removal frequency-resolved optical gating,’’ Appl.
Phys. B 74, S265–S271 (2002).


