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Simulations of frequency-resolved optical gating
for measuring very complex pulses
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Frequency-resolved optical gating (FROG) and its variations are the only techniques available for measuring
complex pulses without a well-characterized reference pulse. We study the performance of the FROG
generalized-projections algorithm for retrieving the intensity and phase of very complex ultrashort laser pulses
[with time–bandwidth products (TBPs) of up to 100] in the presence of noise. We compare the performance of
three versions of FROG: second-harmonic-generation (SHG) FROG, polarization-gate (PG) FROG, and cross-
correlation FROG (XFROG), the last of which requires a well-characterized reference pulse. We found that the
XFROG algorithm converged in all cases on the first initial guess. The PG FROG algorithm converged for all
moderately complex pulses, for 99% of the pulses we tried, and for more than 95% of even the most complex
pulses �TBP�100�. The SHG FROG algorithm converged for 95% of the pulses we tried and for over 80% of
even the most complex pulses. We found no additional ambiguities in any of these techniques. © 2008 Optical
Society of America

OCIS codes: 320.7100, 120.5050.
l
b
f
d
t
v
w
t
n
a
T
m
o
P
r
s

s
f
d
c
p
a
f
s
o
r
c
o
h
c
f
b
t

. INTRODUCTION
he shaping of ultrashort laser pulses into complex inten-
ities and phases versus time is finding many applica-
ions, including coherent control [1], telecommunications
2], micromachining [3], and multiphoton imaging [4]. In
ddition, several commercial pulse shapers [5–8] have be-
ome available and can generate pulses with time–
andwidth products (TBPs) up to �100. Complex pulse
hapes also occur in continuum generation [9]. Unfortu-
ately, methods for measuring the actual shapes (inten-
ity and phase versus time) of such complex pulses have
ot received much attention.
Most techniques for measuring ultrashort laser pulses

ither do not yield the complete time-dependent intensity
nd phase (e.g., autocorrelation [10]) or can at best only
easure simple pulses [e.g., spectral phase interferom-

try for direct electric-field reconstruction (SPIDER) [11]].
method has recently been introduced [multiphoton in-

rapulse interference phase scanning (MIIPS) [12]] that
imultaneously shapes and measures pulses, but it uses
he same pulse shaper to both shape and measure the
ulse and so cannot be said to constitute an independent
easurement of the shaped pulse, and it has not been

ested on complex pulse shapes. If a well-characterized
eference pulse is available, linear spectral interferom-
try is, in principle, capable of measuring complex pulses,
ut most versions of it have artificially limited spectral
esolution and so have not been able to do so. Also, spec-
ral interferometry suffers from extreme alignment sensi-
ivity and so is difficult to use. We recently introduced a
implified version of spectral interferometry [spatially en-
oded arrangement for temporal analysis by dispersing a
air of light e-fields (SEA TADPOLE) [13]], which has ap-
roximately an order of magnitude better spectral reso-
0740-3224/08/060A70-11/$15.00 © 2
ution than conventional versions, and it avoids the de-
ilitating alignment sensitivity. We have demonstrated it
or measuring shaped pulses with TBPs of several hun-
red. It also can measure the complete spatiotemporal in-
ensity and phase at and near the focus. Like all other
ersions of spectral interferometry, however, it requires a
ell-characterized reference pulse whose spectrum con-

ains that of the shaped pulse to be measured. Fortu-
ately, when pulse shaping, such a pulse is generally
vailable in the form of the unshaped pulse. Thus SEA
ADPOLE is ideal for measuring shaped pulses, but such
easurements require the use of two separate devices,

ne to measure the unshaped pulse and the SEA TAD-
OLE to measure the shaped pulse. The reference-pulse
equirement prevents spectral interferometry from mea-
uring continua.

Currently, the most commonly used method for mea-
uring shaped and complex pulses (and the simplest) is
requency-resolved optical gating (FROG) [14], which
oes not require a reference pulse, and so the same device
an be used to measure both the unshaped and shaped
ulses. Since its introduction in 1991, FROG (see Fig. 1)
nd its many variations have been used to measure the
ull intensity and phase of a wide range of ultrashort la-
er pulses. FROG has measured the intensity and phase
f few-femtosecond pulses, pulses over many wavelength
egions, and single pulses. Variations on it [cross-
orrelation FROG (XFROG)] have even measured attosec-
nd pulses [15], but, more importantly, for our purposes
erein, XFROG has measured the most complex pulses—
ontinua—ever measured [9]. XFROG, like spectral inter-
erometry, requires a well-characterized reference pulse,
ut the XFROG reference-pulse spectrum need not con-
ain that of the shaped pulse. The unshaped pulse is also
008 Optical Society of America
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deal for XFROG measurements of the shaped pulse, as
ell. Nevertheless, the version of FROG most commonly
sed to measure shaped pulses is second-harmonic-
eneration (SHG) FROG. SHG FROG is self-referenced,
sing the pulse to measure itself. Like its fellow FROG
echniques, it has many advantages for measuring
haped pulses, including built-in independent checks on
ts measurements, geometries for single-shot operation,
nd versatile, often very simple, arrangements. A single
HG FROG–or any self-referenced FROG—device can be
sed to measure both the unshaped and shaped pulses.
he various FROG iterative algorithms [15] are known

or their reliability and robustness in measuring rela-
ively simple pulses �TBP� �5� where they have been
sed most of the time. However, because pulse-shaping
pplications can involve rather complex pulses, it is im-
ortant to check the various FROG algorithms’ theoreti-
al performance for complex pulses. This has never been
one. Indeed, since in this case such measurements would
nvolve the use of a complex pulse to measure a complex
ulse, we have never expected SHG FROG to perform
ell for such pulses and have always recommended spec-

ral interferometry or XFROG, which use a simple (un-
haped) pulse to measure the complex pulse, for such
easurements. But, as this advice has generally been ig-

ored, and SHG FROG is already in common use for mea-
uring complex pulses, we consider it in this contribution.
ndeed, it is interesting to see how well the various FROG
ethods measure such complex pulses.
Specifically, we test three FROG iterative algorithms.

hese include those of SHG FROG; polarization-gate (PG)
ROG, which is also self-referenced; and XFROG. They
re all based on the same generalized-projections (GP) ap-
roach [14]. To do so, we generated complex test pulses in
oth the time and frequency domains and then added 1%
oisson noise to all the resulting traces. We find that the
FROG algorithm converges with 100% reliability on the
rst initial guess, which is in agreement with an existing
roof that (noise-free) spectrogram (XFROG) inversion
hould always succeed [16]. On the other hand, we find,
s expected, that PG and SHG FROG are not 100% reli-

ig. 1. Schematic of a SHG FROG apparatus. A pulse is split
nto two, one pulse gates the other in the SHG crystal, and the
elative delay is varied. The nonlinear-optical signal pulse spec-
rum is then measured versus delay. In PG FROG, the nonlinear-
ty is polarization gating in glass, and crossed polarizers are
sed. In XFROG, an independent (previously measured) refer-
nce pulse is used instead of one of the unknown pulses. Other
ROG geometries exist and use other nonlinear-optical
rocesses.
ble in the presence of noise, but, surprisingly, are much
loser to perfection than expected. PG FROG achieves
00% convergence for pulses with TBP�30 and �95% for
ore complex pulses (including TBP�100). SHG FROG

chieves �80% effectiveness at retrieving even the most
omplex pulses, provided that several initial guesses are
llowed if the first fails to yield convergence. Also, when
he algorithm fails to converge, it nevertheless succeeds
n retrieving the approximate length and general shape of
he pulse, failing only in the details, which could still be
dequate for many purposes. Thus, while SEA TADPOLE
nd XFROG remain preferable, if not ideal, for measuring
haped pulses (in our opinion), SHG FROG and, in par-
icular, PG FROG should also provide adequate and rela-
ively robust measurements of such complex pulses, espe-
ially if the user desires to use only one device for
easurements of both the unshaped and shaped pulses or
reference pulse is not available.

. FROG, THE GENERALIZED-PROJECTIONS
LGORITHM, AND SIMULATION
ETAILS
he general FROG apparatus is shown in Fig. 1.
The expression for the SHG FROG, PG FROG, or

FROG trace is

IFROG��,�� = ��
−�

�

E�t�Eg�t − ��exp�− i�t�dt�2

,

here E�t� is the unknown input-pulse electric field that
e are trying to measure. These simple versions of FROG
re distinguished by their gate pulses: in SHG FROG,
g�t�=E�t�; in PG FROG, Eg�t�= �E�t��2; and in XFROG,
g�t� is an independently measured pulse. XFROG is
athematically equivalent to the well-known spectro-

ram, and SHG FROG and PG FROG yield autospectro-
rams (the pulse gates themselves). Like all time-
requency-domain methods, all three FROG methods
nvolve measurements of intensity versus two variables,
requency ��� and delay ���. In other words, SHG FROG
nd PG FROG are spectrally resolved autocorrelations
17], and XFROG is a spectrally resolved cross correla-
ion.

All versions of FROG were shown to be examples of
athematical problems called two-dimensional phase-

etrieval and hence are able to yield essentially unique so-
utions as long as the entire FROG trace is nearly com-
letely contained in the data set (that is, not significantly
ropped at its edges) and the trace details are properly re-
olved in time and frequency [14]. The phase-retrieval al-
orithm usually used to retrieve the pulse from the mea-
ured trace is the GP algorithm [14,18]. It involves one-
imensionally Fourier transforming the signal field,
sig�t ,��=E�t�Eg�t−��, back and forth between the t and �
omains, effectively alternately iteratively projecting onto
wo constraint sets (corresponding to the two equations
bove; see Fig. 2), eventually leading to the intersection of
hese two constraints—the final solution. Early versions
f the FROG code were reliable, but slow; fortunately,
ore recent versions are much faster due to the use of

aster programming languages (e.g., C), faster code, and



t
i
r
C
r

a
g
o

t
t
t
i
N
r
g
b
T
n

F
p
g
d
p
t
v
t
y
i
t

F
t
a
F
h
c
c

A72 J. Opt. Soc. Am. B/Vol. 25, No. 6 /June 2008 Xu et al.
he realization that the generalized projections algorithm
s so reliable that additional algorithms included for extra
eliability were unnecessary and so have been eliminated.
ommercial FROG codes now routinely achieve 20 pulse
etrievals per second and are very reliable [19].

The initial guess can affect the convergence of the GP
lgorithm. When retrieving very simple pulses, the GP al-
orithm is generally not sensitive to the particular choice
f an initial guess. But, when measuring complex pulses,

Fig. 2. Generalization-projections algorithm for FROG.
he initial guess could, in principle, become more impor-
ant. Early on, random noise was found to be the best ini-
ial guess for the FROG algorithm for simple pulses and
s generally used as the initial guess in FROG programs.
evertheless, in preparation for this study, we compared

andom noise and a Gaussian flat-phase pulse as initial
uesses, and we found that random noise is generally a
etter initial guess when measuring complex pulses also.
hus, in all of our simulations, we have used random
oise for the initial guess.
To test the performance of the GP algorithm in SHG

ROG, PG FROG, and XFROG for measuring complex
ulses, we generated a large set of complicated pulses. We
enerated each pulse by starting with a sequence of ran-
om complex numbers and multiplying it by a Gaussian
ulse in the time domain. We then Fourier transformed
he resulting pulse and multiplied its frequency-domain
ersion by a Gaussian spectrum. We chose the widths of
he Gaussians to yield the desired complexity. This
ielded a complex pulse in both intensity and phase and
n both time and frequency, ideal for testing the ability of
hese methods to measure generally complex pulses.

Although specifying the Gaussian widths yielded a
ig. 3. Moderately complex pulse with TBP=4.7. (a) Original SHG FROG trace with noise, (b) retrieved trace, (c) generated and re-
rieved spectral intensity and phase, (d) generated and retrieved temporal intensity and phase. In (c) and (d) (and in all subsequent
nalogous figures), the generated pulse is indicated by curves and the retrieved pulse by dots. Good convergence has occurred here. The
ROG trace is well contained in the image window. For better display, the shown FROG traces were cut from the generated one, which
ad a wavelength range from 327.675 to 514.385 nm and a delay range from −768 to 762 fs. The maximum value of three rows and
olumns along the perimeter of the image window is 0.88% of the peak value after background subtraction, so the trace was only slightly
ropped.
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ood estimate of the pulse TBP, it is not exact. So, for each
ulse, we computed the precise root-mean-square (rms)
BP as our measure of the complexity of the pulse:

TBPrms = trms�rms,

where trms
2 = �t − �t�2� = �t2� − �t�2,

�t2� =�
−�

�

t2I�t�dt,

�rms
2 =�

−�

�

A��t�2dt +�
−�

�

A�t�2���t�2. �1�

n the above expressions, I�t� is the normalized intensity,
rms is the rms temporal width, and �rms is the rms spec-
ral width. A�t� is the real amplitude, and ��t� is the tem-
oral phase. The prime indicates the derivative [20].
We computed the FROG traces for the generated com-

lex pulses. To simulate the experimental environment,
e also added 1% additive Poisson noise to each FROG

race. This additive noise yields pixel-to-pixel signal

ig. 4. Very complex pulse with TBP=40.6. (a) Original SHG F
pectral intensity and phase, (d) generated and retrieved tempor
rated trace (here and in later figures also) appears somewhat da
ubtracted prior to running the algorithm); this subtraction and
he identical structure in both pulses and traces. For better disp
ength range from 326.503 to 512.02 nm and a delay range from −
he maximal value of the three rows and columns along the perim
ubtraction.
ariations independent of the FROG trace intensity. The
eason for using Poisson noise is that it approximates the
oise from practical noise sources, such as dark current.
uch additive noise is also more challenging for the algo-
ithm than multiplicative noise, which necessarily goes to
ero in the wings of the trace. In this approach, the mea-
ured trace with the additive noise at each pixel will be
21]

IFROG
��̄� ��i,�j� = IFROG��i,�j� + �ij�/�̄, �2�

here �ij is a pseudorandom number drawn from a Pois-
on distribution of mean �̄, and a is the noise fraction,
hich was set to 0.01, and the mean of the Poisson distri-
ution was 5 counts.
Suppressing background noise is important in FROG
easurements. Any nonzero average background (due to
oise) in a FROG trace implies spurious nonzero intensity
t large times and with high frequency in the pulse, that
s, spurious pulse wings with high frequency noise. Thus,
n practice, before running the pulse retrieval program,
ackground subtraction is always performed. Several
ethods are available, and they include Fourier low-pass

trace with noise, (b) retrieved trace, (c) generated and retrieved
nsity and phase. Good convergence has occurred here. The gen-
ue to the additive noise applied to it (and whose mean has been
orithm combine to remove most of the added noise. Indeed, note
shown FROG trace is cut from the generated one with a wave-
1530 fs. The FROG trace is well contained in the image window.

f the image window is 1.25% of the peak value after background
ROG
al inte
rker d

the alg
lay, the
1536 to

eter o
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ltering, corner suppression, and mean background sub-
raction. In our simulations, we chose to perform only
imple mean-background subtraction (although perform-
ng the others as well would likely have further improved
he performance beyond what we observe). The mean of
he noise was obtained by averaging the values in the 5
5 pixel squares in the four corners of the FROG trace

i.e., far from the center of the trace, where the most im-
ortant pulse information is located). After subtracting
his constant background from all points in the trace, we
et all the resulting negative points to zero (as is usually
one).
Another point worth mentioning is that, for the best re-

rieval, the FROG trace should be well contained in the
maging window. In our experience, most traces that have
ielded retrieval problems have been severely cropped
nd so should not be expected to yield good convergence
since they do not contain all the pulse information). Thus
e were careful to use arrays with delay and spectral

anges large enough to fully contain the trace. Specifi-
ally, it is best if the maximum trace value at the edges of
he array is less than 1% of the peak value of the FROG
race, although by chance some of the traces in this study
xceeded this value (and, we later discovered, proved to

(a)

ig. 5. Extremely complex pulse with TBP=94.3. (a) Original S
nd retrieved spectral intensity and phase, (d) generated and re
ere. The FROG trace is well contained in the image window. Fo
ith a wavelength range from 327.348 to 514.385 nm and a dela

olumns along the perimeter of the image window is 1.11% of th
e more likely to exhibit convergence problems). Also, it is
mportant to have sufficient temporal and spectral reso-
ution, which simply means that the number of points be
ufficient for the relevant trace complexity. These issues
hould be kept in mind when performing experiments,
here the experimental spectral resolution must be suffi-

ient (sufficient temporal resolution is generally easy) and
he temporal and spectral ranges must also be sufficient,
hich could be a challenge for extremely complex pulses.
e dealt with these issues by increasing the size of the

rray as the TBP of the pulse increased, using a 256
256 array for the simplest pulses up to 1024	1024 for

he most complex pulses we studied.
Figure 3 gives an example of a moderately complex

ulse with a TBP of 4.7 and its SHG FROG trace (with
oise) and the resulting retrieved pulse. The retrieved in-
ensity and phase of the pulse and the generated one
gree well with each other. A measure of the success of a
ulse retrieval is the FROG error (the rms difference be-
ween the input and retrieved traces), which is 0.00341
or this 256	256 grid, which is very good. Other mea-
ures of the retrieval success are available when perform-
ng simulations, and they are the mean rms intensity and
hase errors between the generated pulse and the re-

b)

ROG trace, (b) retrieved FROG trace (with noise), (c) generated
temporal intensity and phase. Good convergence has occurred

er display, the shown FROG trace is cut from the generated one
ge from −3072 to 3066 fs. The maximal value of three rows and
value after background subtraction.
(

HG F
trieved
r bett
y ran



t
0
t
F
m

a
4
v
0
a

i
t
h
	
0

F
r
v

a

v
t
i
1
p
S
g
F
s

e
f
m
t
c
t
p

h
�
h
n
t

F
a
t
r
a
p

Xu et al. Vol. 25, No. 6 /June 2008/J. Opt. Soc. Am. B A75
rieved pulse [21]. For this pulse, we found them to be
.007 and 0.0209, respectively. The excellent pulse re-
rieval in this case is not surprising because the SHG
ROG GP algorithm is known to work very well when
easuring such moderately complex pulses.
A considerably more complex pulse, with a TBP of 40.6,

nd its corresponding SHG FROG trace are shown in Fig.
. The retrieved intensity and phase of the pulse agree
ery well with the generated curves. The FROG error is
.0052 for this 512	512 grid. The mean rms intensity
nd phase errors are 0.0274 and 0.0219, respectively.
An extremely complex pulse, with a TBP of 94.3, and

ts corresponding traces are shown in Fig. 5. The re-
rieved pulse agrees very well with the generated pulse
ere as well. The FROG error is 0.4% for the 1024
1024 grid. The mean rms intensity and phase errors are

.0337 and 0.0452, respectively.
Because the mathematical constraints in SHG and PG

ROG are not purely convex, convergence of the GP algo-
ithm is not necessarily guaranteed, and we find that con-
ergence cannot be achieved for all traces.

In practice, convergence of the GP algorithm is gener-
lly indicated by the FROG error. In this work, as in pre-

(a)(a)

(c)

ig. 6. A pulse for which convergence has not been achieved. (a
ted and retrieved spectral intensity and phase, (d) generated a
ween the generated and retrieved pulses. For better display, th
ange from 327.464 to 514.385 nm and a delay range from −1530 t
s in the previous examples, perhaps the reason for the poor con
erimeter of the image window is 1.51% of the peak value after
ious work, we find that, for FROG data with �1% addi-
ive noise, convergence is achieved when the FROG error
s less than �1%. When the FROG error is greater than
%, the GP algorithm can be seen to have generated a
ulse that is visibly different from the generated pulse.
ee Fig. 6, which shows an example for which conver-
ence has not been achieved (TBPrms of 38.9). The SHG
ROG error for this case is 1.6% for this 512	512 grid
ize.

In Fig. 7, we show the distribution of the SHG FROG
rror for 30 pulses with TBP values from 30 to 40. We
ound for all converging cases that the FROG error is
uch less than 0.5%, and for the nonconverging cases,

he FROG error is greater than 1.5%. We confirmed the
onverging and the nonconverging cases by visual inspec-
ion of the generated and retrieved traces, intensities, and
hases.
As a result, in this analysis, we defined convergence to

ave failed for a given initial guess if a FROG error of
1% has not been achieved, and we define convergence to
ave failed in general if a FROG error of less than 1% has
ot been achieved after ten runs of the algorithm using
en different randomly generated initial guesses. We

b)

d)

rated SHG FROG trace with noise, (b) retrieved trace, (c) gener-
ieved temporal intensity and phase. Note the discrepancies be-
n FROG trace is cut from the generated one with a wavelength
fs. The FROG trace is not as well contained in the image window
ce. The maximal value of the three rows and columns along the
ound subtraction.
(
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hould point out that, at first glance, it would seem that
se of the rms intensity and phase errors would be more
igorous and hence more appropriate. However, use of
hese definitions is actually significantly complicated by
everal factors. First, one would need to take into account
HG FROG’s ambiguity in the direction of time and the
eed to curve fit each intensity and phase curve to the
recise center of time, peak intensity, and absolute
hase—quantities not measured by FROG (or any other
ethod for measuring ultrashort pulse shapes). Also,

hase-unwrapping issues as well as the meaninglessness
f the phase when the intensity approaches zero (and the
ssociated arbitrariness in the definition of the phase er-
or) further complicate the problem. As a result, the
ROG error is a far better approach for automating this
nalysis, which involves more than 1000 pulses. However,
e also visually inspected a large fraction of the retrieved

ntensities and phases to verify convergence and also to
onfirm the absence of ambiguities (possibly very differ-
nt pulses with the same traces) beyond the trivial ones
entioned above.
Using this approach, we studied the general perfor-
ance of the various FROG GP algorithms for measuring

omplex pulses with TBPs up to 100. We generated 350
ulses for each statistical analysis. The TBP’s of these
ulses ranged from 1 to 100. For the purposes of display-
ng our results, we binned sets of 35 pulses evenly into in-
ervals of TBP ranging from 1 to 10, 11 to 20, etc.

. TESTING THE SHG FROG GP
LGORITHM

he results of our analysis for SHG FROG are shown in
ig. 8. We find that, in general, the more complex the
ulse, the more initial guesses on average are needed for
onvergence. In other words, the SHG FROG algorithm is
ore sensitive to the initial guess for more complex

ulses.
Figure 9 shows the percentage convergence for pulses

s a function of the pulse rms TBP. Of course, with more
nitial guesses, the percentage of convergence increases.
n general, we find that SHG FROG works remarkably
ell for such complex pulses, given the complexity of the
roblem. When five initial guesses are allowed, more than

ig. 7. (Color online) Histogram of FROG errors for 30 pulses
ith a TBP value from 30 to 40, showing a clear delineation be-

ween converging (FROG error �1%) and nonconverging (FROG
rror �1%) cases.
0% of the pulses, and occasionally 90%, can be retrieved,
ven for extremely complicated pulses with TBPs of
100. In most cases, even when convergence is not

chieved after five initial guesses, convergence is
chieved after a few more tries. Only 5% of the pulses
ailed to achieve convergence after ten initial guesses.

. TESTING THE PG FROG GP
LGORITHM
e performed an analogous simulation for PG FROG. A

ypical example is shown in Fig. 10. The TBP of the gen-
rated pulse is 15.5. The retrieved intensity and phase
ersus time and wavelength agree with the generated
nes. The FROG error is 0.0034 for this 512	512 grid.
he mean rms intensity and phase errors are 0.0236 and
.0293, respectively.
We generated 300 new random pulses with TBPs from
to 100 to test the general performance of the PG FROG
P algorithm. Thirty pulses were generated for each TBP

nterval. The results are shown in Figs. 11 and 12. We
ound that the PG FROG GP algorithm works extremely
ell for retrieving complex pulses with TBPs less than 40.
ven for extremely complex pulses, the PG FROG GP al-
orithm converged most of the time. Only one initial
uess was needed to obtain the correct pulse in most
ases. Only three nonconverging cases occurred, and it is

ig. 8. Number of initial guesses required for correct pulse re-
rieval in SHG FROG versus TBP for the pulses in our analysis.
ote that most pulses can be retrieved in SHG FROG using only
few initial guesses, but some (shown as requiring ten pulses)

annot.

ig. 9. (Color online) Statistical analysis of the performance of
he GP algorithm in SHG FROG. In most cases, when conver-
ence is not achieved after one initial guess, convergence is
chieved after a few more tries, but not always.
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nteresting that no traces yielded convergence for four to
ine initial guesses, implying that the nonconvergent
races were pathological in some way. Indeed, we believe
hat, by chance, these PG FROG traces were not well con-
ained in the array. We plan to rerun this analysis later,
hecking for such cropping and eliminating such cropped
races from the analysis (or enlarging the array before
unning the algorithm).

. TESTING THE XFROG GP ALGORITHM
e performed an analogous simulation of complex pulse
easurement using XFROG. We used a reference pulse

hat was a simple Gaussian pulse with a FWHM of 50 fs
nd zero phase. Although a great deal has been written
bout choosing optimal pulses for generating spectro-
rams, we made no effort to optimize this pulse for opti-
al results. A typical example pulse and trace are shown

n Fig. 13. The TBP value of this generated pulse is 66.
he retrieved phase and intensity versus time and versus
avelength agree with the generated ones. Note that this

race is simpler than SHG and PG FROG traces for simi-
arly complex pulses due to the simplicity of the gate
ulse in XFROG. The FROG error is 0.003 for this 512

ig. 10. Example of PG FROG for measuring a complex pulse (h
etrieved trace, (c) generated and retrieved spectral intensity and
etter display, the shown FROG trace is cut from the generated
ange from −1536 to 1530 fs. The PG FROG trace is well containe
erimeter of the image window is 0.89% of the peak value after
512 grid. The mean rms intensity and phase errors are
.0411 and 0.0314, respectively.
We also generated 350 new pulses with TBPs from 1 to

00 to test the general performance of the XFROG GP al-
orithm. As before, 35 pulses were generated for each
BP interval from 1 to 10, 11 to 20, etc. The results are
hown in Fig. 14. We found that the XFROG GP algo-
ithm works extremely well for retrieving even the most
omplex pulses in the presence of noise, converging for ev-
ry pulse on the first try. Only one initial guess was
eeded to obtain the correct pulse for every case, and the
ROG error was always less than 0.01. Our results verify

hat the spectrogram [14] always yields the correct pulse
nd that the GP algorithm is an excellent algorithm to do
o.

. DISCUSSION AND ADDITIONAL
BSERVATIONS

he three FROG algorithms we considered in this study
erformed quite well. XFROG performed perfectly, PG
ROG performed very well, and SHG FROG performed
easonably well. The performance order scales with the
omplexities of the gate pulses in these techniques.

pulse with TBP=15.5). (a) Generated FROG trace with noise, (b)
e, (d) generated and retrieved temporal intensity and phase. For
th a wavelength range from 327.464 to 514.385 nm and a delay
e image window. The maximal value of three columns along the

ound subtraction.
ere a
phas

one wi
d in th
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FROG generally uses a very simple gate pulse, and ours
as particularly simple; PG FROG uses the intensity of

he unknown pulse, and SHG FROG uses the unknown
ulse intensity and phase. The simpler the gate pulse, the
etter the performance.
The question that naturally arises is why the SHG and

G FROG algorithms converge so reliably for most ex-
remely complex pulses but not for some considerably less
omplex pulses. In the course of working with the various

ig. 11. Number of initial guesses required for correct pulse re-
rieval in PG FROG versus TBP. Note that most pulses can be
etrieved using only one initial guess, and nearly all can be re-
rieved after two or three.

(a)

ig. 13. Example of XFROG for measuring complex pulses (h
etrieved trace, (c) generated and retrieved spectral intensity and
etter display, the shown FROG trace is cut from the generated
ange from −2048 to 2040 fs. The XFROG trace is well contained
erimeter of the image window is 1.013% of the peak value.
ROG techniques over time, we have noted that one way
o yield poor convergence is to crop the trace in time or
requency. We have noticed that, in this study, the traces
hat failed to yield convergence were those with the larg-
st nonzero values along their perimeters. The simple so-
ution in this case would be to scan further in delay and
requency. In a future study, we plan to further investi-
ate this issue, and we believe that we will achieve even
etter convergence then. Also, it would be interesting to
ee if the use of additional noise-filtering techniques and

ig. 12. (Color online) Statistical analysis of the performance of
he GP algorithm in PG FROG.

b)

ulse with TBP=66). (a) Generated FROG trace with noise, (b)
e, (d) generated and retrieved temporal intensity and phase. For
ith a wavelength range from 343.02 to 480.065 nm and a delay
e image window. The maximal value of three columns along the
(

ere a p
phas
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in th
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dditional algorithmic techniques, such as those used in
revious versions of the FROG algorithm but abandoned
hen the GP approach proved to work so well, would
elp.
Another question that our study addressed is the issue

f the possibility that other, previously unknown, ambigu-
ties exist in these techniques. It is well known that SHG
ROG possesses a (trivial) ambiguity in the direction of
ime (which is easily removed by a second measurement
ith additional glass in the beam), and most pulse mea-

urement techniques, including FROG, do not measure
he absolute phase and the pulse arrival time and also
ave (trivial) ambiguities in the relative phases of well-
eparated pulses and modes (although a properly de-
igned XFROG measurement lacks these). But our study
f complex pulses allowed us to search for additional pre-
iously unknown ambiguities (trivial or otherwise) that
ould in principle occur for complex pulses. In view of the
act that we added noise to the traces, it was also possible
hat we could find approximate ambiguities, that is, addi-
ional pulses whose traces are not identical to that of the
orrect pulse, but, due to the presence of noise, are within
he experimental error of the trace of the correct pulse
nd yet are quite different from the correct pulse. How-
ver, in the �1000 randomly generated complex pulses
tudied in this effort, we found no pulse whose retrieved
race was equal to or very similar to its original trace but
hose retrieved intensity and phase differed significantly

rom the original pulse. Thus, we found no new exact—or
pproximate—ambiguities in SHG FROG, PG FROG, or

ig. 14. Statistical analysis of the performance of the XFROG
P algorithm. Convergence is always achieved after only one ini-

ial guess, even for extremely complicated pulses.

ig. 15. Logarithmic plots of the generated and retrieved pulse
ntensity of the pulse).
FROG. This confirms that these techniques should work
ell for the measurement of simple and complex pulses.
It should also be mentioned that, while the FROG algo-

ithm is very fast for relatively simple pulses (typically
sing 64	64 traces and requiring a fraction of a second),

t is much slower for complex pulses, such as those of this
tudy, scaling as N2 ln N, where N	N is the size of the
rray.
Another issue is the accuracy with which FROG can
easure zeros and weak regions of the pulse. Logarithmic

lots of one of our SHG FROG simulations, Figs. 4(c) and
(d), are shown in Fig. 15. Only the intensity is shown.
he generated and retrieved pulses agree very well in the

ower intensity regions, with some slight discrepancies,
sually well below 1%. In view of our addition of 1% noise
o the trace, this represents very good performance. Thus,
ROG could be expected to measure relatively weak re-
ions of the pulse with good accuracy.

Finally, we should point out that, when the FROG al-
orithm does not converge, this fact is made clearly evi-
ent by the relatively large FROG error, so one always
nows when an additional initial guess is required.

. CONCLUSIONS
e have simulated the performance of the generalized-

rojections algorithm for retrieving very complex pulses
with TBP up to 100) from SHG FROG, PG FROG, and
FROG traces in the presence of additive noise.
For SHG FROG, we find that, even if the pulse is ex-

remely complicated, the intensity and phase of the pulse
an usually be retrieved. But more than one initial guess
s often needed for such complicated pulses in the pres-
nce of noise.

The PG FROG algorithm performance is considerably
etter. It always converged for simple and moderately
omplex pulses with TBPs up to 30. Overall, it could re-
rieve 99% of the pulses we tried, and when the TBP
alue is greater than 30, approximately 95% of the com-
lex pulses could be retrieved using only one initial guess.
XFROG worked perfectly, retrieving all complex pulses

n the first initial guess, even in the presence of noise.
We conclude that, if a suitable reference pulse is avail-

ble, and the user is willing to build two separate devices,

Fig. 4(c) (the spectrum of the pulse) and Fig. 4(d) (the temporal
s from
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he XFROG and SEA TADPOLE techniques remain the
est choices for measuring complex pulses, but, if not, PG
ROG is an excellent choice, and SHG FROG is a reason-
ble choice also.
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