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We consider in detail the technique of tomographic ultrafast retrieval of transverse light E fields (TURTLE) for
measuring the evolution of an arbitrary, potentially complex, and ultrashort laser pulse’s intensity-and-phase
and polarization-state evolutions in time. TURTLE involves making three ultrashort-pulse measurements us-
ing established single-polarization pulse-measurement techniques. Two of the measurements are of the pulse’s
orthogonal linear polarizations (e.g., horizontal and vertical) and the third occurs for an arbitrary additional
polarization angle (e.g., 45°). If the field projections are measured using second-harmonic-generation
frequency-resolved optical gating, we demonstrate that a simple optimization can accurately and reliably re-
trieve the time-dependent polarization state, even for very complex polarization-shaped pulses. © 2009 Opti-
cal Society of America

OCIS codes: 260.5430, 320.5540, 260.7120.

1. INTRODUCTION
Polarization-varying complex ultrashort laser pulses were
first used in quantum control [1–5] and are now playing
roles in many areas of research. Such “polarization-
shaped” pulses have been considered for the generation
and measurement of high-harmonic pulses [6] and for the
control of two-dimensional lattice vibrations in crystals
[7]. Polarization-shaped pulses have been generated by
various means, mostly based on Fourier-domain pulse
shaping of individual polarization components [3,8–11].
On the other hand, only a few methods exist to measure
them. Time-resolved ellipsometry (TRE) [12,13] was one
of the first technologies used to characterize the polariza-
tion evolution of ultrashort pulses. It involves measuring
all four Stokes parameters of the pulse, but it is labor in-
tensive. A simpler technique is polarization-labeled inter-
ference versus wavelength for only a glint (POLLIWOG)
[14], which uses spectral interferometry [15] to
characterize—successively or simultaneously—the two
orthogonal polarization components relative to a well-
characterized reference pulse. Other approaches involve
measuring the spectrum and the cross correlation of the
polarization components or the cross-phase modulation,
both combined with iterative numerical algorithms
[16,17]. POLLIWOG is the most commonly used tech-
nique, and it works well; but it requires careful phase sta-
bilization and measurement of the relative phase between
the two polarizations, and it requires a separate self-
referenced technique for measuring the required refer-
ence pulse.

Recently, we introduced a self-referenced technique for

measuring polarization-shaped pulses, which we called
tomographic ultrafast retrieval of transverse light E fields
(TURTLE) (Fig. 1) [18]. It does not require a separate
well-characterized reference pulse and is based on mea-
suring the electric field versus time at three different lin-
ear polarizations, obtained by making such measure-
ments after a polarizer for three different polarizer
angles. Two of the measurements characterize the electric
field for mutually orthogonal field components, and the
third—measured at an arbitrary angle in between (typi-
cally 45°)—is used to determine the phase relationship
between these components, which yields the full vector
polarization evolution of the pulse. Any established
method that determines the complex field Ẽ��� of a single
linear polarization can, in principle, be used in TURTLE.
In addition the pulse energy or the average power must
be measured for each polarization. No modifications to
the standard pulse-measurement apparatus are needed.

Here we study TURTLE technique using second-
harmonic-generation frequency-resolved optical gating
(SHG FROG) by performing detailed simulations. We
simulate TURTLE’s performance using SHG FROG for
simple and complex polarization-shaped pulses and find
that it works very well, even for very complex pulses. Our
simulations show that an error minimization algorithm
using the SHG FROG trace performs robustly—even in
the presence of added noise. We attribute this robust be-
havior to the well-known overdetermination of the pulse
complex electric field afforded by a FROG trace.

We chose FROG because it is the most mature self-
referenced pulse-measurement technique available and
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has been shown to measure accurately the full intensity
and the phase of an arbitrary complex ultrashort pulse
[19], subject only to trivial ambiguities. Specifically we
chose SHG FROG due to its high sensitivity and preva-
lence. Also, it has minimal ambiguities and then only
trivial ones. Trivial ambiguities of standard SHG FROG
include the direction of time (DOT) of the pulse; that is,
SHG FROG cannot distinguish between a reconstructed
field Ẽ��� and its complex conjugate, Ẽ����. For pulses
that are well-separated in either optical frequency or
time, an additional ambiguity arises in their relative
phases �� [20,21]. For example, relative phases of both
�� and ��+� yield the same SHG FROG trace for double
pulses in time. However, it has been shown that these
trivial ambiguities can easily be removed using simple
techniques that involve minimal additional effort. Adding
a known spectral dispersion (chirp) and performing a sec-
ond FROG measurement removes the DOT ambiguity.
Even better, replacing the FROG beam splitter with an
etalon generates identical trains of overlapping (and de-
caying) pulses in both arms of the device; such waveforms
do not experience such ambiguities, and the original pulse
can be retrieved from them easily and unambiguously
[22], except for the usual absolute-phase and arrival-time
ambiguities common to all self-referenced pulse-
measurement techniques. Thus FROG and its variations
yield the best-posed (least ambiguous) set of self-
referenced pulse-measurement techniques currently
available.

While these remaining two ambiguities are generally
considered trivial, and they are for most purposes, they
are not so trivial for the measurement of polarization-
shaped pulses. Nonmeasurement of the absolute phase
and time preclude the determination of key quantities of
the full vector field. Specifically, what distinguishes mono-
chromatic 45° linear polarization from circular polariza-
tion is the relative phase of the horizontal and vertical po-
larizations, which is the difference between the two pulse
absolute phases, which are not measured in self-
referenced pulse-measurement techniques in general.
And what distinguishes 45° linear polarization from two
well-separated pulses of orthogonal polarization is, of
course, their relative arrival times. Thus these two other-
wise trivial ambiguities are not so trivial for polarization-
shaped pulses and thus become the principal unknowns

that TURTLE aims to determine. It is the third FROG
trace that accomplishes this. The only case we have found
in which TURTLE, as described above, does not work is
the trivial case in which the two polarization components
are identical, and the polarization thus does not actually
evolve, but this ambiguity can easily be removed with one
additional measurement.

2. THEORY
In the frequency domain, we write the polarization-
shaped vector field as

Ẽ��� = Ẽx���x̂ + rẼy���e−i���+��ŷ, �1�

where the optical angular frequency ���−�0, and Ẽx���
and Ẽy��� represent the complex frequency-domain polar-
ization components along the Cartesian axes, with the
beam propagating along ẑ. We use this formulation be-
cause ultrafast polarization shapers typically operate by
independently shaping orthogonal polarization compo-
nents. To obtain the full polarization information, we
need to know not only the fields Ẽx��� and Ẽy��� but also
the relative amplitude r, the relative delay �, and the
relative phase � between the components. No existing
self-referenced single-polarization pulse-measurement
technique is able to provide absolute time or phase infor-
mation, but it is easy to measure the relative amplitude
using a simple energy detector as given below. The mea-
surement technique that we call TURTLE determines
these relative quantities from an additional SHG FROG
trace of the polarization component, projected here at 45°
between x̂ and ŷ. In the following, we label this projection
angle 	.

The easiest ambiguity to resolve is the relative ampli-
tude ratio r. We can determine it experimentally by mea-
suring the average power P for each linear projection
measurement. The power can be written as

P 
�
−�

�

�r�Ẽ����2d� = r�2�
−�

�

�Ẽ����2d�, �2�

where r� is a scaling factor that relates the reconstructed
arbitrarily normalized field Ẽ��� to the physically present
field. So, if we normalize the retrieved fields according
to ��Ẽ����2d�=1, then we can find r in Eq. (1) from r
=�Py /Px. As we show below, the power measurements are
critical for the trivial case of pure elliptical polarization as
shown below, where the reconstructed fields are identical
except for the amplitude factors. In the following simula-
tions, we set r=1 without loss of generality.

TURTLE aims to determine the relative delay � and
the relative phase � in Eq. (1) using an additional polar-
ization projection at angle 	. We denote this projected
field as Ẽ	���, and it can be written as

Ẽ	��� = cos 	 Ẽx��� + r sin 	 Ẽy���e−i���+��. �3�

A choice of 	=45° will usually give the best results be-
cause Ẽx��� and Ẽy��� contribute equally to the projected
field Ẽ	���. We choose this angle in the simulations below.

Fig. 1. (Color online) Schematic visualization of the TURTLE
principle. The time-evolving electric field vector E�t� (not shown)
is characterized by measuring linear projections Ẽx���, Ẽy���,
and E	��� in the frequency domain using an existing ultrashort-
pulse characterization technique. The algorithm establishes the
relative amplitude r, delay �, and phase � between the projec-
tions to retrieve the full vector field.
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The expression for the SHG FROG trace of a single lin-
early polarized pulse temporal electric field E�t� is [23]

IFROG��,T� = 	�
−�

�

E�t�E�t − T�e−i�tdt	2

. �4�

The FROG trace is collected by recording the second-
harmonic spectra generated as the delay T between two
replicas of E�t� is varied. From the SHG FROG trace, an
established generalized-projections algorithm reliably
finds the full intensity and phase of an arbitrary ul-
trashort laser pulse [23]. Thus, Ẽx��� and Ẽy��� can
readily be determined experimentally without the need
for additional reference pulses.

Having found Ẽx��� and Ẽy���, we use a minimization
algorithm to find the relative delay � and the relative
phase � for which Ẽx��� and Ẽy��� yield the projected
field Ẽ	���. The algorithm can find these parameters us-
ing the additional information contained in the
	-projected SHG FROG trace. We sample the FROG
traces onto regularly spaced optical frequency �i and de-
lay Tj axes in an N�N grid. We calculate the projected
FROG trace from Ẽ	��� using Eq. (4), and TURTLE in-
volves minimizing the difference between the calculated
I	

calc�i , j� and the measured I	
meas�i , j� traces. We use the

criterion of the RMS error defined as [24]

e =

�

i,j=1

N

�I	
meas�i,j� − I	

calc�i,j��2

�

i,j=1

N

�I	
meas�i,j��2

, �5�

which describes the difference between the two FROG
traces I	

meas and I	
calc divided by the nonzero area. The er-

ror e is then minimized with respect to the iterated values
of � and �, with the optimal values corresponding to those
values of � and � that minimize e. In the simulations, we
calculate the error surface e�� ,�� about the optimal val-
ues.

We must also ensure that TURTLE uses the correct
relative DOT between the components Ẽx,y���, since a
wrong DOT in one projection and the correct DOT in the
other no longer corresponds to the vector field being mea-
sured. This ambiguity is easily resolved in two ways: we
can determine the overall correct DOT for both fields,
Ẽx��� and Ẽy���, by placing an etalon or adding a known
amount of material chirp in one of more of the SHG
FROG measurements. This is the standard method for re-
solving the time ambiguity in SHG FROG. In TURTLE,
knowing the DOT of one component, Ẽx��� or Ẽy���, is
sufficient to determine that of the other and hence that of
the entire polarization-shaped pulse. In other words, if
only the shape of the vector field—but not its absolute
DOT—is needed, we can calculate the error e�� ,�� sepa-
rately for both combinations of relative DOTs: Ẽx���
+ Ẽy��� and Ẽx���+ Ẽy

����. The TURTLE trace for non-
trivial vector pulse shapes is sensitive to the relative
DOT, so the minimum error in e will be lower for the cor-
rect relative DOT.

To simulate the practical environment, we added 0.5%
Poisson noise to each SHG FROG trace. In this approach,
the measured trace with such an additive noise [23] at
each pixel is

IFROG
�	̄� ��i,�j� = IFROG��i,�j� + 	ij/	̄, �6�

where 	ij is a pseudorandom number drawn from a Pois-
son distribution of mean 	̄ and  is the noise fraction. We
verified that the maximum trace value at the edges of the
array is less than 0.5% of the peak value of the FROG
trace. Suppressing the background noise is important in
SHG FROG measurements. Any nonzero average back-
ground (due to noise) in a FROG trace implies spurious
nonzero intensity at large times and with high frequency
in the pulse, that is, spurious pulse wings with high fre-
quency noise. So, in practice, before running the pulse re-
trieval program, background subtraction is always per-
formed. Several methods are available, and they include
Fourier low-pass filtering, corner suppression, and mean-
background subtraction. In our simulations, we chose to
perform only simple mean-background subtraction (al-
though performing the others as well would likely have
further improved the performance beyond what we ob-
serve). The mean of the noise was obtained by averaging
the values in the 5�5 pixel squares in the four corners of
the FROG trace (i.e., far from the center of the trace,
where the most important pulse information is located).
After subtracting this constant background from all
points in the trace, we set all the resulting negative
points to zero (as is usually done).

We found the values of the relative phase and delay us-
ing the 45° polarized FROG trace and the fields deter-
mined from the x- and y-polarized traces, using a
MATLAB simplex minimization routine for multidimen-
sional unconstrained optimization [25]. This routine is
ideal for the TURTLE technique because, while simplex
routines are known to be slow, TURTLE involves only a
two-parameter minimization, and so it converges rela-
tively quickly (typically 1 min or so for a 256�256 trace
on a laptop). Also, simplex routines are less likely than
derivative-based routines to fall into possible local
minima.

3. SIMULATIONS
Below we give several examples of using the TURTLE
technique to find the polarization state of an ultrashort
pulse. While the majority of TURTLE measurements are
anticipated to be used to characterize complex pulses with
complex polarization evolution, we begin with some
simple cases since the extremely simple case of nonevolv-
ing polarization with identical x and y components re-
vealed the only ambiguity we encountered in our study.
The ambiguity disappears in the presence of even slight
polarization complexity and so is unlikely to present prob-
lems for the use of TURTLE.

The first example pulse comprises two identical x̂ and ŷ
components consisting of transform-limited Gaussian
pulses with a full width at half-maximum (FWHM) dura-
tion of 30 fs so that Ex�t�=exp−2 ln 2�t /30 fs�2� and
Ey�t�=exp−2 ln 2��t+� /2� /30 fs�2�. The relative delay and
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the relative phase between the polarization components
were �=170 fs and �=� /3. The resulting SHG FROG
traces for the projected fields Ẽx���, Ẽy���, and Ẽ	��� are
shown in Figs. 2(a)–2(c), respectively. In Figs. 2(d) and
2(e), we show the pulse intensity and the temporal phase
reconstructed from the SHG FROG traces for Ex�t� and
Ey�t�. The peak intensity is set at t=0. The zero order and
first order spectral phases, which correspond to the rela-
tive phase and delay in the evolution of the polarization,
are not reflected in these two retrieved fields. The relative
phase and delay are obtained from the SHG FROG trace
of Ẽ	���. Since the pulses are symmetrical in time and
frequency, the reconstructed field projections closely
match the generating fields, in particular with regard to
the absolute time and phase of each component.

Figure 2(f) shows the error surface e, about the target
values of � and �, calculated using the reconstructed
Ẽx,y��� and the 	-projected FROG trace I	 from Eq. (5).
On this error surface, the parameter minimization re-
trieved a relative delay of 169.65 fs and a relative phase of
0.3344� or 1.3316� rad, depending on the initial guess.
This is the expected � rad phase ambiguity that arises
from SHG FROG traces for pulses separated in time; as
discussed above, an additional measurement by adding
additional chirp on either one of the pulses or both pulses
to make Ex�t� and Ey�t� overlap in time can be used to
eliminate this ambiguity. A three-dimensional representa-
tion of the vector field E�t� is sketched in Fig. 2(g). Exami-
nation of the 	-projected SHG FROG trace of Fig. 2(c) re-
veals spectral intensity modulations at a FROG delay of
T=0. As discussed in Section 2, these fringes correspond
to spectral interferometry fringes, and their spacing is in-
versely proportional to �, and the peak locations relative
to �=0 are given by �.

Combining the identical fields Ẽx��� and Ẽy��� from
the previous example with �=0 and �= ±� /2 yields a cir-
cularly polarized pulse shown in Fig. 3. In this case, we
can relate the field components by Ẽy���= Ẽx���e−i� so
that the 	-projected SHG FROG trace for 	=45° will be
given by

IFROG��,T� = ��1 + ei��2�2�� Ex�t�Ex�t − T�e−i�Tdt�2.

Thus, the projections x̂ and ŷ yield identical SHG FROG
traces [Fig. 3(a)] with the 	 projection being qualitatively
the same but scaled by an intensity-weighting factor of
��1+e−i��2�2= �2�1+cos ���2. Since this factor does not de-
pend on the sign of �, which determines the handedness of
the vector field, TURTLE cannot distinguish between left
and right circularly polarized fields. This can be seen in
the error surface shown in Fig. 3(b), which indicates two
symmetric minima at ±�. The TURTLE fitting algorithm
retrieved a relative delay of �=0.0174 fs and a relative
phase of �=0.5014� or −0.5015� rad, depending on the
initial guess. Further, in this case of indistinguishable
SHG FROG traces, the normalization of Eq. (5) and that
inherent in the standard FROG reconstruction algorithm
means that the ellipticity, determined by the relative am-
plitude r of the x̂ and ŷ components, cannot be directly
determined. An independent power or pulse energy mea-
surement is thus necessary to determine the ellipticity.

The handedness ambiguity can be resolved by introduc-
ing different chirps to the two components as shown in
Fig. 4. Here, we added ��2����= ±200 fs2/rad quadratic
spectral phase to each of Ẽx,y���. The SHG FROG traces
for these components are still indistinguishable [Fig. 4(a)]
but, due to the knowledge of the signs of the added chirps,
we can correctly reconstruct the fields as shown in Figs.
4(b) and 4(c). The 	-projected SHG FROG trace, shown in
Fig. 4(d), is now distinct and its shape uniquely deter-
mines the correct phase since the error surface [Fig. 4(e)]
exhibits only a single minimum. The retrieved relative
delay and phase were �=−1.0242 fs and �=0.5183� rad,
identifying the pulse as right circularly polarized. Alter-
natively, we could characterize the pulses transmitted

Fig. 2. (Color online) TURTLE retrieval steps for a vector field
consisting of two transform-limited Gaussian components sepa-
rated by �=170 fs. (a),(b),(c) Simulations of measured SHG
FROG traces for Ẽx���, Ẽy���, and Ẽ	���, respectively, with 	
=45°. (d),(e) Pulse fields Ex�t� ,Ey�t� obtained using the standard
reconstruction algorithm (dots), compared with the generating
fields (solid curve). (f) The error surface; the two minima indicate
the � rad phase ambiguity arising from the SHG FROG trace of
two pulses well separated in time. (g) Sketch of the full vector
field E�t�.
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through a circular polarizer, analogously to the determi-
nation of one of the four Stokes vectors needed to fully de-
fine the vector field. The ambiguity in the sign of � arises
only in the case of transform-limited temporally symmet-
ric pulses and is not expected to occur for polarization-
shaped pulses.

We show in Fig. 5 results from a randomly generated
more complex pulse. We simulate an arbitrary vector field
E�t� by creating random complex field components for
Ẽx��� and Ẽy��� and by applying Gaussian amplitude fil-
ters in both time and frequency domains. For the pulse
shown in Fig. 5, the temporal and frequency filter FWHM
widths were �t=180 fs and ��=0.3 rad/fs. The resulting
time–bandwidth products (TBPs) were 17.8 for the x̂- and
13.0 for the ŷ-polarized components. We chose relative de-
lay and phase values of �=60 fs and �=� /3 rad, respec-
tively. The SHG FROG traces of Figs. 5(a)–5(c) show a
rapid structure characteristic of nontrivial pulses. As
shown in Figs. 5(d) and 5(e), we verified that the FROG
reconstructions were in good agreement with the generat-
ing fields, and from the error surface [Fig. 5(f)] the mini-

mization algorithm retrieved relative delay and phase
values of 62.74 fs and 0.3349� rad, respectively.

Another case with a more complex pulse is shown in
Fig. 6. The method to generate these two complex pulses
is the same as the previous case. The temporal and fre-
quency filter FWHM widths in this case were �t
=1800 fs and ��=0.3 rad/fs. The resulting TBPs were
169.7 for the x̂- and 180.4 for the ŷ-polarized components.
Due to the limitation of the computer memory, these are
the most complicated pulses generated. We chose relative
delay and phase values of �=500 fs and �=� /3 rad, re-
spectively. The SHG FROG traces of Figs. 6(a)–6(c) show
a rapid structure characteristic of highly nontrivial
pulses. As shown in Figs. 6(d) and 6(e), we verified that
the FROG reconstructions were in good agreement with
the generating fields, and from the error surface [Fig. 6(f)]
the minimization algorithm retrieved relative delay and
phase values of 504.96 fs and 0.35� rad, respectively.

Table 1 shows some cases with different pulse com-
plexities. All these x and y components are generated
from random pulses filtered by a clean Gaussian pulse
with FWHM widths of �t=900 fs in the time domain and
��=0.3 rad/fs in the frequency domain. We chose rela-
tive delay and phase values of �=500 fs and �
=0.33� rad, respectively, for all cases. Without any noise
added, the exactly correct relative delay and relative

Fig. 3. (Color online) (a) Simulation of measured SHG FROG
traces; in this case all three projections yield the same trace. (b)
The error surface; the two minima indicate an ambiguity in the
chirality of the vector field E�t�, which is shown in (c).

Fig. 4. (Color online) Establishing the chirality of a circularly
polarized field by adding a known chirp; cf. Fig. 3. (a) Simulation
of measured SHG FROG trace for Ẽx���; an identical trace is re-
corded for Ẽy���. (b),(c) Pulse fields Ex�t� ,Ey�t� obtained using the
standard reconstruction algorithm (dots), compared with the
generating fields (solid curve). (d) SHG FROG trace for the
	-projected component. (e) The error surface that shows only a
single minimum at �=+� /2. (f) Sketch of the full vector field E�t�.
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phase can be reconstructed in each case. With 0.5% Pois-
son noised added, the retrieved values are varied by at
most 1.3% in the relative delay and 7.5% in the relative
phase.

4. CONCLUSIONS
We have analyzed the performance of TURTLE using
SHG FROG for the self-referenced measurement of the
complete vector field intensity and phase of polarization-
shaped ultrashort laser pulses. Our simulations show
that TURTLE works very well, robustly yielding the com-
plete vector polarization even of very complex pulses and
in the presence of noise. Indeed, the SHG FROG TURTLE
minimization also reliably distinguishes the relative
DOTs of the polarizations. We found no nontrivial ambi-

guities. We expect this success to extend to TURTLE
based on other FROG nonlinearities. We conclude that
SHG-FROG-based TURTLE is a reliable technique for

Fig. 5. (Color online) TURTLE retrieval steps for a randomly
generated vector field. (a),(b),(c) Simulations of measured SHG
FROG traces for Ẽx���, Ẽy���, and Ẽ	���, respectively. (d),(e)
Pulse fields Ex�t� ,Ey�t� obtained using the standard reconstruc-
tion algorithm (dots), compared with the generating fields (solid
curve). (f) The error surface and (g) sketch of the full vector field
E�t�.

Fig. 6. (Color online) TURTLE retrieval steps for a randomly
generated very complex vector field. (a),(b),(c) Simulations of
measured SHG FROG traces for Ẽx���, Ẽy���, and Ẽ	���, respec-
tively. (d),(e) Pulse fields Ex�t� ,Ey�t� obtained using the standard
reconstruction algorithm (dots), compared with the generating
fields (solid curve). (f) The error surface and (g) sketch of the full
vector field E�t�.

Table 1. Different Pulses with Their
Reconstructed Relative Delays And Relative

Phases

TBP
(x component)

TBP
(y component)

Reconstructed
�

Reconstructed
�

84 121.8 501.23 0.329�

103.3 95 493.65 0.359�

57.7 89.5 501.59 0.325�

70.5 37.5 497.52 0.329�

100.4 79.2 499.54 0.333�

83.2 110.7 504 0.318�
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self-referenced measurements of polarization states of
even very complex polarization-shaped pulses.
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