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Angular dispersion—whether from prisms, diffraction gratings, or etalons—is well known to result in a pulse-
front tilt. Focusing into a tilted etalon, in particular, generates a huge angular dispersion, which is very useful
for high-resolution spectrometers and pulse shapers. Here we demonstrate experimentally that, due to the
large angular dispersion ��3° /nm�, the pulse directly out of an etalon can have a huge pulse-front tilt—
89.9°—which can cause one side of a few-millimeter-wide beam to lead the other by 1 m, that is, several nano-
seconds. We propagated a 700 ps near-transform-limited pulse through the etalon and measured the resulting
spatiotemporal field, confirming this result. To make this measurement, we used a high-spectral-resolution
version of crossed-beam spectral interferometry, which used a high-resolution etalon spectrometer. We also
performed simulations, which we found to be in good agreement with our measurements. © 2010 Optical So-
ciety of America

OCIS codes: 320.5550, 300.6190, 320.7100, 320.4240.

1. INTRODUCTION
It is well known that the spatial and temporal dependen-
cies of the electric fields of light pulses, especially femto-
second pulses, are often coupled and so cannot be as-
sumed to be independent [1]. This is because common
optical elements can introduce spatiotemporal couplings
or cross dependencies in space x and time t in the light
pulse’s electric field.

Because the electric field E�x , t� of the pulse can be rep-
resented equivalently in any Fourier domain, xt, x�, kx�,
or kxt, a given spatiotemporal coupling actually manifests
itself as several seemingly different, but in fact equiva-
lent, effects when viewed in any of the other domains [1].
Indeed, a common spatiotemporal coupling is angular dis-
persion, which is a cross term in the intensity (real) of the
field E�kx ,��,

Ễ�kx,�� = Ễ0�kx + ��� − �0�,��, �1�

where � is the coupling constant, and �0 is the pulse cen-
ter frequency; the overtilde means Fourier transforma-
tion from the time domain t to the frequency domain �,
and the hat �∧ � indicates Fourier transformation from x
to kx. By simply Fourier transforming to the xt-domain
(and applying the shift and then inverse shift theorems),
it is easy to see that, if angular dispersion is present,
there is always a corresponding xt coupling in the inten-
sity, known as the pulse-front tilt (PFT) [2–6]:

E�x,t� � E0�x,t + �x�. �2�

It is interesting that angular dispersion is, however,
not the only source of the PFT [1,7]. There is an addi-
tional contribution to the PFT due to the simultaneous
presence of temporal and spatial chirps. For Gaussian
beams and pulses, the following analytical relationship
between angular dispersion and PFT can be found:

PFT = k0� + ��2��, �3�

where k0=2� /	0, � is the angular dispersion, � is the spa-
tial chirp, and ��2� is the temporal chirp due to group de-
lay dispersion [1,7].

In the absence of spatial or temporal chirp, however,
the PFT is linearly proportional to the angular
dispersion—independent of the cause of the angular
dispersion—so, because diffraction gratings generally in-
troduce more angular dispersion than prisms, they also
yield a more tilted pulse front. The PFT from diffraction
gratings and prisms has been investigated in detail and
even put to a good use. For example, PFT has been used
to make single-shot autocorrelation measurements of
many-picosecond pulses [8,9]. The PFT has also been use-
ful for micromachining [10].

Bor et al. pointed out that less commonly used sources
of dispersion, such as etalons [3], also introduce PFTs.
This was also observed and used for time domain pulse
shaping by Xiao et al. [11]; and because the angular dis-
persion introduced by an etalon can be orders of magni-
tude more than that of prisms and gratings, their PFTs
can be extremely large. This is the phenomenon that we
investigate in this paper.

An etalon is simply two parallel highly reflecting sur-
faces, in which the output beam is the superposition of
many delayed replicas of the input beam. The delay be-
tween each replica is 2nd /c, where 2d is the etalon round-
trip length, and n is the refractive index of the medium
inside the etalon. Due to the interference of the many out-
put beams, only colors having a wavelength that is an in-
teger �m� multiple of the etalon’s width, or m	0 /n=2d,
exit the cavity without loss. Therefore, when focusing into
an etalon, a range of path lengths is present, one for each
ray, so different colors will exit the cavity along different
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rays, or angles, resulting in its well-known angular dis-
persion [12].

For a given beam size, etalons can be used to generate
as much as 100 times more angular dispersion than grat-
ings and prisms, and they have been used to construct
high-resolution spectrometers [13,14] and pulse shapers
[15]. By the above Fourier-transform result, the huge an-
gular dispersion of etalons implies that their output pulse
front must be very tilted—by as much as 100 times that
due to a diffraction grating. Indeed, that can be seen by
simple light-travel-time considerations: the part of the
pulse that makes the most passes through the etalon sees
the most delay; and the thicker and more reflective the
etalon, the more the dispersion and tilt.

Here we simulate and measure the complete spatiotem-
poral field of a �700 ps, �3 pm bandwidth pulse sent
through an etalon. Because etalons are usually very lossy
due to the highly reflective coating required on their en-
trance surface, we use an etalon with a small transparent
gap on its entrance surface, which reduces the loss to es-
sentially zero, and is usually referred to as a virtual im-
age phase array (VIPA) [13] (see Fig. 2). For the simula-
tions, we simply superimpose delayed and successively
defocused replicas of the input pulse, where the number
of replicas is chosen to produce the measured linewidth of
the etalon.

Measuring the output pulse in space and time from the
etalon is considerably more challenging, and—to our
knowledge—such measurements have never been made.
Even measuring the temporal field of our spatially uni-
form 700 ps directly out of the laser is quite difficult, re-
quiring several nanoseconds of temporal range and/or pi-
cometer spectral resolution; and considering that
diffraction gratings typically produce a maximum of 3
ps/mm of PFT (the grating size times the speed of light;
see Fig. 1), the high finesse etalon can be expected to pro-
duce several nanoseconds of PFT across a 1 cm beam, cor-
responding to a tilt angle in excess of 89°, due to its in-
creased angular dispersion, corresponding to a massively
tilted pulse.

To accomplish this, we measure the spatio-spectral
phase added to the pulse by the etalon using a linear in-
terferometric frequency-domain technique used for mea-
suring femtosecond and picosecond pulses, but extended
to the nanosecond regime. We use the variation of spec-
tral interferometry [16] usually known as crossed-beam
spectral interferometry, which literally involves measur-
ing a spectrally resolved spatial interferogram [17–20].

This requires a spectrometer with a spectral resolution
equal to the inverse of the unknown pulse duration, or for
our case 
1 pm. Rather than using a very large and ex-
pensive diffraction-grating spectrometer to achieve the
needed resolution, we use an etalon spectrometer. As a
reference pulse, we use the beam directly from the laser,
which is crossed with the tilted pulse out of the etalon at
a small angle at a camera to produce spatial interference
fringes. In the other dimension, we spectrally resolve the
interference fringes using an etalon spectrometer so that
a two-dimensional interferogram I�x ,	� is measured. Us-
ing Fourier filtering along the x-dimension, the field of the
tilted pulse, Eunk�x ,	�, is determined [19].

2. MODELING THE SPATIOTEMPORAL
FIELD OF THE PULSE FROM AN ETALON
Intuitively we can estimate the PFT by considering that
each delayed replica is also spatially shifted along the x
direction due to the etalon’s tilt angle �tilt (see Fig. 2). So
we expect the left side of the beam to be ahead in time
compared to the right side by approximately
2dn / �c cos �tilt� multiplied by the number of bounces of
the beam inside the etalon. Considering that the number
of bounces is approximately given by the finesse F, which
we found experimentally to be 50 (see Section 3), for d
=5 mm, n=1.5, and with �tilt=1°, we expect 2.5 ns of the
PFT across an output beam with a width along the
x-dimension of �5.8 mm.

To more precisely calculate the field emerging from the
etalon shown in Fig. 2, for a given input pulse that is free
of spatiotemporal couplings as well as temporal chirp, we

Fig. 1. (Color online) Prisms and diffraction gratings introduce angular dispersion or, if viewed in time, PFT. In prisms, the group delay
is greater for rays that pass through the base of the prism than those that pass through the tip. In gratings, rays that impinge on the
near edge of the grating emerge sooner and so precede those that must travel all the way to the far edge of the grating. While the reasons
for the PFT are seemingly unrelated, the PFT can be shown to be due to the angular dispersion of the component.

Fig. 2. (Color online) Schematic of an etalon, which yields PFT
because each successive delayed pulse is laterally shifted in both
space and time. The particular etalon shown here had a small
uncoated gap at the bottom of the entrance face for more efficient
insertion of the beam.
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simply superimpose the emerging delayed, diverging, and
transversely displaced replicas. We start with the field
just after the lens Ein�x ,	�, which is given by

Ein�x,�,z = 0� = exp�− �� − �0

��
�2

− � x

w0
�2

− ikx sin �tilt + i
k0x2

2f � , �4�

where �tilt is the incident angle of the center ray at the
etalon, w0 is the input beam spot size, and �� is the spec-
tral bandwidth. See Fig. 2 for the other parameters. The
field immediately after the etalon is given by

Eout�x,�� = t1t2 	
m=0

F

�r1r2�mEf�x,�,2dm�, �5�

where t1, r1, t2, and r2 are the reflection and transmission
coefficients of the first and second surfaces of the etalon,
and Ef=Ein�x ,� ,z+ f�, that is, the field at the focus. To cal-
culate the spatio-spectral field after each pass through
the etalon, we use the angular-spectrum-of-plane-waves
approach [21] to propagate the field from the previous
pass by an additional distance of 2d, as shown below:

Ef�x,�,2dm� = Ix
−1
Ix
Ef�x,�,2d�m − 1���

exp�i2dnk0�1 − �kx	�2��. �6�

This involves a one-dimensional Fourier transform of the
initial field to the kx-domain, multiplying this field by the
propagation kernel as a function of kx, and then inverse-
Fourier transforming back the x-domain. The same ap-
proach is used to propagate the initial field Ein�x ,�� up to
the etalon’s front surface to generate Ef�x ,��. The results
of these simulations using our experimental parameters
are shown in Section 4.

Note that, if the spectral range of the input pulse ex-
ceeds the free spectral range (FSR) of the etalon (given by
	2 cos � /2dn), then multiple colors will emerge at the
same angle, resulting in multiple overlapping pulse
fronts, in which each pulse front will have a different tilt.
Much as in the case of a diffraction grating, these mul-
tiple pulse fronts are the different orders. Our experi-
ments produced 2–3 orders because, while the FSR (76
pm or 20 GHz for d=5 mm at 1064 nm) of the etalon was
much greater than the pulse’s bandwidth, focusing into it
effectively increased the path length for the rays at larger
angles, which also increased the FSR for these rays. In
both our simulations and measurements we spatially fil-
tered out the additional 2–3 orders that resulted in, and
kept only the order containing the largest angular disper-
sion. Previous authors described a similar approach for
modeling VIPA etalons, and they derived an analytical ex-
pression for the field at the focal plane of a lens placed af-
ter the etalon, which is useful for making a VIPA etalon
spectrometer [22].

3. MEASURING THE SPATIOTEMPORAL
FIELD OF THE PULSE FROM AN ETALON
A. Method
We use crossed-beam spectral interferometry to measure
the spatiotemporal intensity and phase added to the in-

put pulse by the etalon (referred to as the PFT etalon) like
that shown in Fig. 2. The back surface of the etalon was
imaged onto a camera in the x or angular dispersion di-
mension of the PFT etalon, and in the other dimension,
the beam was spectrally resolved with a second etalon
spectrometer to achieve the needed spectral resolution. A
spatially clean reference pulse crossed at a small angle
with the tilted unknown pulse to produce the following in-
terferogram at the camera:

I�x,	� = Eref�	�2 + Eunk�x,	�2 + Eunk�x,	�Eref�	�cos�kx�c

+ �unk�x,	� − �ref�	��, �7�

where �c is the crossing angle between the beams. The in-
terferogram that we measured was the same as that mea-
sured in the method called Spatially Encoded Arrange-
ment for Temporal Analysis by Dispersing a Pair of Light
E-Fields (SEA TADPOLE) [18], except that the spatial in-
formation of the unknown pulse is simultaneously mea-
sured in our current measurements, because no fibers are
used in our setup. Therefore we used an identical Fourier-
filtering procedure to that used for the SEA TADPOLE to
extract the spatio-spectral intensity and phase of the un-
known pulse from the measured interferogram [18,19].
This process is illustrated in Fig. 3.

The top right image in Fig. 3 shows a typical interfero-
gram that we measured. The fringes along the
x-dimension are due to the beams’ small crossing angle.
Due to the angular dispersion in the beam from the eta-
lon, the spatial fringe periodicity varies with wavelength.
Similarly, for larger values of x, there are spectral
fringes due to a delay between the reference and un-
known pulses because of the tilt of the unknown pulse
front.

B. Experimental Setup and Parameters
To measure the interferogram described above in order to
characterize the tilted pulse out of an etalon, we use the
experimental setup shown in Fig. 4. As our source we use
a Standa Nd:LSB microdisk laser, which emits pulses
centered at 1064 nm, with a repetition rate of 10 kHz and

Fig. 3. (Color online) Retrieving the spatio-spectral field of the
unknown pulse from the interferogram. The two-dimensional in-
terferogram (top left) was Fourier transformed along the
x-dimension. In the kx-domain (top right) the data separated into
three bands, where either the top or bottom band was isolated
(bottom right) and then inverse-Fourier transformed back to the
x-domain. The spatio-spectrum of the reference field was divided
out from the resulting complex field to isolate the spatio-spectral
intensity and phase of the pulse out of the etalon (bottom left).
Only the intensities (indicated by color) are shown in the figure.
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having a near-transform-limited duration of �700 ps. To
study the pulse after the etalon, we put a beam splitter at
the output of the laser forming reference and unknown
arms of the interferometer. The unknown beam passes
through the first etalon (which we call the PFT etalon and
with d=5 mm) adding the PFT. The pulse from the etalon
propagated through a spatial filter, which removes the
higher orders from the PFT etalon. This also demagnified
the beam by 2 and imaged it onto the entrance of the
imaging spectrometer. Here the reference beam crossed at
a small angle and spatially overlapped with the unknown
beam. The imaging spectrometer imaged the crossing
beams onto the camera’s x-dimension, resulting in spatial
interference fringes. Along the camera’s other dimension,
the crossing beams were spectrally resolved using a sec-
ond wider etalon �d=10 mm� to generate angular disper-
sion, and then a cylindrical lens to map the angle or color
onto position at the camera. This resulted in a two-
dimensional interferogram at the camera. Note that, for
flexibility, two lenses were used in the imaging spectrom-
eter in order to achieve the desired demagnification of 2.

The glass-spaced etalons for our experiments were cus-
tom made by CVI, and had a �99.3% reflectivity on the
front surface and 97% reflectivity on the back surface, and
a refractive index of 1.5 (ultraviolet fused silica) at 1064
nm. They were round with a diameter of 25.4 mm, and
there was a small 3 mm uncoated gap in the front surface
for inserting the beam. The PFT etalon had a FSR
=20 GHz, or 75 pm, and the second etalon for the spec-
trometer had a FSR of 10 GHz, or 38 pm. To determine
the linewidths of each of these etalons, we used to them to
spectrally resolve a wavelength-tunable New Focus Veloc-

ity laser, which had a much narrower linewidth than that
of the etalons �
1 MHz�. The widths of the measured
spectra were the linewidths of the etalons, which we
found to be 0.9 pm (240 MHz) and 1.2 pm (320 MHz) for
the 1 cm and 5 mm etalons, respectively. The etalon spec-
trometers were calibrated by scanning the frequency of
this laser, or when this narrowband laser was not avail-
able, for the frequency-axis calibration, we used a Mich-
elson interferometer to generate a double pulse from the
Standa laser, which had a measurable (with a ruler) path-
length difference, and therefore we knew the generated
spectral-fringe spacing.

In the experimental setup shown in Fig. 4, the cylindri-
cal lenses used to focus into the etalons both had focal
lengths of 100 mm, and the lens in the spectrometer had a
focal length of 500 mm. We estimated the etalon tilt angle
with respect to the beam, �tilt, to be around 1°, and we
found a value of 0.9° to produce simulations that fit best
with what we measured. There was a total demagnifi-
cation of 4 of the beams at the camera: 2 from the spa-
tial filter and 2 from the imaging lenses in the spec-
trometer. It was important to image the output of the
etalon onto the camera; because, as a pulse containing an-
gular dispersion propagates, spatial chirp is generated,
reducing the PFT due to the decreased local bandwidth
[3].

Note that in the above setup, and using the retrieval al-
gorithm described in the previous section, we measured
the spatio-spectrum and intensity added to the unknown
pulse by the first etalon. Any phase terms that the un-
known and reference pulses had in common, such as chirp
in the laser output, canceled out in this measurement.

4. RESULTS AND DISCUSSION
Using the experimental setup described above, we mea-
sured the spatio-spectral field E�x ,	� of the pulse just af-
ter the etalon. We knew the spectral line shape of the eta-
lon in the spectrometer, so we first deconvolved it from
the measured interferograms using MATLAB’s built-in
Richardson–Lucy algorithm. Then we retrieved the un-
known pulse using the Fourier-filtering algorithm de-
scribed above. We Fourier transformed the retrieved field
to both the kxx and xt-domains to see both the angular
dispersion and the PFT. The experimentally retrieved in-
tensities in these three domains are shown at the top of
Fig. 5. We also performed simulations using all of the ex-
perimental parameters described in Section 3 and the
method described in Section 2. These results are shown at
the bottom of Fig. 5.

As expected, the intensity I�kx ,	�, which indicates the
angular dispersion, shows a tilt, indicating that different
colors are propagating at different angles (where kx
=2� /	0 sin �) due to the angular dispersion introduced by
the etalon. By finding the maximum in the spectrum for
each angle, we found the tilt to be linear and to have a
slope of 3°/nm. Note that the angular dispersion is linear
due to our small bandwidth and would not be if the
pulse’s bandwidth were a few hundred picometers or
greater [22]. A diffraction grating with 1000 grooves/mm,

Fig. 4. (Color online) Experimental setup for measuring the
spatiotemporal field of the pulse from an etalon. Top view: Along
this dimension, the output of the laser was split into a reference
and an unknown arm. In the unknown arm, the pulse was sent
through the first etalon �d=5 mm�, which introduced angular
dispersion. The output of the PFT etalon was imaged onto the en-
trance of the etalon imaging spectrometer along the x-dimension.
Also, in this dimension, the reference beam spatially overlapped
and crossed at a small angle with the unknown pulse. In the eta-
lon imaging spectrometer, the crossing beams were reimaged
into the x-dimension of the camera resulting in vertical interfer-
ence fringes. Along the camera’s other dimension, the beams
were spectrally resolved using an etalon to introduce angular dis-
persion and a cylindrical lens to map angle, or color, onto vertical
position.
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used at grazing incidence and for a wavelength of 1064
nm, results in an angular dispersion of 0.06°/nm, or about
1/50 of that our PFT etalon. We also characterized the
pulse’s couplings with dimensionless � parameters, which
are the normalized cross moments of the pulse’s two-
dimensional intensity, whose magnitudes are always �1
[23]. For the angular dispersion, we found that �k	

=0.015 for the pulse from the etalon, which was quite
small due to the small bandwidth of our laser.

If angular dispersion is present, so is the PFT. This is
apparent from the large tilt in the intensity I�x , t� at the
left in Fig. 5. Again, using curve fitting, we found the tilt
to be linear and have a slope 1.3 ns/mm, or �xt=0.27,
which is a large value for this parameter. The pulse out of
the etalon is extremely tilted with its arrival time varying
by 2.6 ns, or 78 cm, across the �2 mm beam at the cam-
era, that is, a tilt angle of 89.9°. As mentioned above, we
used 4 demagnification in the spatial filter and also in
the simulations, so just after the etalon, the tilt would
have been 325 ps/mm.

The spatio-spectrum I�x ,	� shows no detectable tilt,
and therefore no spatial chirp. The � parameter for this
spectrum was �xt=0.006, which is generally considered to
be out of the detectable range or just due to noise in the
data [23]. In the x	-domain, the coupling introduced by
the etalon is known as wave-front-tilt dispersion [1],
which is a phase coupling and which is why the spatio-
spectral intensity in Fig. 5 is not tilted. A single Fourier
transform moves a purely imaginary quantity into the in-
tensity, which is why the coupling is apparent in the kxx
and xt intensities as shown in Fig. 5.

The agreement between our simulations and measure-
ments is good, with the main discrepancy being in our
measured spatial profile. According to our simulations,
the beam’s spatial profile should approximately exponen-
tially decay along the x-dimension because with each suc-
cessive bounce in the etalon, the intensity is reduced by a
factor of r1r2. The spatial resolution in our measurements
is limited by our ability to image the input beams through
the spectrometer’s etalon. This requires a large depth of
field because each successive beam out of the etalon trav-

els an additional distance of 2dn. Therefore, the depth of
field needed is 2dn times the finesse, which is the propa-
gation distance between the first and last passes of the
etalon, or �60 cm for our 10 mm etalon. Our imaging sys-
tem consisted of a 30 cm followed by a 15 cm focal length
cylindrical lens. Setting the depth of field equal to 60 cm,
we find that the smallest possible feature that we could
resolve at the camera is around 0.3 mm. Therefore the
sharp edge of the spatiotemporal profile is smeared out in
our measurements.

The other small discrepancy is in the width of the mea-
sured intensity I�kx ,	�, which is likely due to the finite
resolution of the etalon spectrometer. Even though we at-
tempted to deconvolve its line shape from the measure-
ments, its finite resolution cannot be perfectly accounted
for. For example, the spectrometer’s alignment may have
been slightly different for our measurements than it was
when we characterized the linewidth using a narrowband
laser, perhaps due to the slight angle of the crossing
beams.

5. CONCLUSIONS AND FUTURE WORK
Here we further illustrated the connection between angu-
lar dispersion and pulse-front tilt (PFT). We showed that
the pulse emerging from an etalon exhibits a very large
PFT: 2.6 ns across a 2 mm beam in our case, or 89.9°. We
directly measured the spatiotemporal field of the pulse
due to the etalon using crossed-beam spectral interferom-
etry. In order to achieve the necessary spectral resolution
to measure a pulse nanoseconds long, we constructed the
interferometer using a second narrower-linewidth etalon
to make an imaging etalon spectrometer. Our measure-
ments also directly quantify the angular dispersion from
the etalon, which we found to be 50 times more than the
most that can be produced with a diffraction grating. Our
results also confirm that the spatial chirp introduced by
the etalon is negligible, and they are in reasonably good
agreement with our simulations.

To our knowledge, these are the first spatiotemporal
intensity-and-phase characterizations of a pulse in the
nanosecond regime. Given that our etalon spectrometer
has a finesse of 50 and a linewidth of 0.9 pm, we expect to
be able to use it measure pulses with durations of 40 ps to
�2 ns. However, because this method is linear, it can only
detect spatiotemporal differences in the phase of the un-
known pulse relative to the reference pulse. While this is
useful for many cases, such as the measurements shown
here, a self-referential method is needed to study the out-
put of nanosecond lasers and amplifiers, and other non-
linear effects of nanosecond pulses. We plan to address
this problem in a future publication.

While angular dispersion is regularly exploited in ap-
plications, the PFT can be useful as well, because it maps
pulse delay onto position. For example, the PFT could be
used to make single-shot long-pulse frequency-resolved
optical gating measurements or to perform any pump-
probe experiment on a single shot. Our results illustrate
that such ideas can be simply extended to allow for con-
tinuous nanosecond-range delays across a beam a mere
centimeter wide.

Fig. 5. (Color online) Experimental (top) and theoretical (bot-
tom) results. Although both the spatio-spectral intensity and
phase were measured, we instead show the intensity in three dif-
ferent domains, achieved by Fourier transforming the measured
field. Center: The reconstructed intensity versus 	 and x. No tilt
was seen, indicating that there was no detectable spatial chirp.
Left: Intensity versus x and t. A large PFT is apparent. Right: In-
tensity versus � and 	, where kx=k0 sin ��2� /	 sin �. The tilt is
due to angular dispersion.
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