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Simultaneous recovery of two ultrashort
laser pulses from a single spectrogram

Kenneth W. DeLong and Rick Trebino

Sandia National Laboratories, MS 9057, Livermore, California 94551–0969

William E. White

Lawrence Livermore Laboratories, Livermore, California 94550

Received January 17, 1995; revised manuscript received June 5, 1995

We introduce a technique for simultaneously measuring the time-dependent intensity and phase of two
independent and arbitrary ultrashort laser pulses from a single measured spectrogram. This two-pulse
method is mathematically equivalent to the problem of blind deconvolution, and we use an algorithm analogous
to those used for deblurring two-dimensional images to recover the two pulses. We demonstrate the method
by simultaneously retrieving the intensity and the phase of two different pulses from a Ti:sapphire laser, one
of which is chirped by propagation through glass.  1995 Optical Society of America
It is not sufficient to be able to measure one ultrashort
laser pulse; generally, one would like to be able to mea-
sure two such pulses simultaneously, for all ultrafast-
spectroscopy experiments involve at least one ultrashort
pulse as input and, in addition, another such pulse as
output, the measurement of both pulses being necessary
to characterize the sample medium. Some ultrafast-
spectroscopic information is available if only the pulse
energies are measured, but significantly more informa-
tion is available if more complete characterization of the
pulses is achieved. As a result, many researchers have
expended much effort to characterize in greater detail
both input and output pulses in material-characterization
experiments.1 – 3 For example, in four-wave-mixing ex-
periments on semiconductors, Bigot et al.4 use an autocor-
relation and a spectrum to characterize their input pulses
and a variety of methods to extract intensity and phase
information from their signal pulse. Indeed, the knowl-
edge of the electric field of a pulse both before and after
it passes through a medium determines the medium’s
absorption coefficient and refractive index for the entire
bandwidth of the pulse. A technique for measuring two
unknown ultrashort laser pulses would therefore be quite
useful.

It has recently become possible to characterize one ul-
trashort laser pulse completely.5 – 8 This measurement is
not so trivial that building two such devices is practical
or cost effective. In addition, signal pulses are often too
weak to be measured with these methods. It would be
preferable to have a method that simultaneously yields
the time-dependent intensity and phase of two indepen-
dent pulses with a single apparatus and that allows one
of the pulses to be weak.

In this paper we present and demonstrate such a
method. Our method is a generalization of one of the
above methods, frequency-resolved optical gating5,9 – 11

(FROG). In FROG, the pulse is used to gate itself, and
the gated slice of the pulse is frequency resolved, gen-
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erating a spectrogram of the pulse. A phase-retrieval
algorithm then extracts the pulse from the spectro-
gram. FROG can be described as a spectrally resolved
autocorrelation.11 One could imagine attempting the
two-pulse problem by performing spectrally resolved
cross correlation, in which one pulse gates a different
pulse. Unlike previous suggestions, in which complete
a priori knowledge of one of the pulses is required,12 in
our proposed method both pulses are presumed to be
unknown. The pulse-extraction problem now is much
more complex than in FROG, however, and it would
not appear that such a trace contains sufficient infor-
mation to determine both pulses. We take advantage
of the fact that the mathematics that we encounter in
the two-pulse-extraction problem is equivalent to two-
dimensional blind deconvolution,13 a technique from im-
age science that quite counterintuitively allows one to
extract both the image and an unknown blurring func-
tion from a blurred image. It has been shown that,
although the one-dimensional blind-deconvolution prob-
lem has ambiguities, the two-dimensional version of this
problem surprisingly yields essentially unique results,
provided that a simple constraint, such as finite support
or nonnegativity, exists.14 As a result, we use a modified
blind-deconvolution algorithm that succeeds in extracting
both pulses.

We call this method of retrieving the intensity and
phase of both pulses from a frequency-resolved cross
correlation15 the twin recovery of electric-field envelopes
by the use of FROG, or TREEFROG.15 In Fig. 1, we
see the way that information about both the probe
and the gate is contained in the TREEFROG trace.
Figure 1 shows TREEFROG traces generated by a Gauss-
ian probe pulse with temporal cubic phase and an
unchirped gate pulse of various widths. Short gate
pulses, which have a large spectral width, produce the
TREEFROG traces that are narrow in the delay direction
and wide in the frequency direction, whereas longer gate
 1995 Optical Society of America
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Fig. 1. Second-harmonic generation TREEFROG traces generated by a probe with temporal cubic phase and an unchirped gate. Both
pulses have a Gaussian intensity profile and were calculated on a 64-element array. The probe has a full-width at half-maximum of
10, and the gate has a width of (a) 4, (b) 8, (c) 16. As the gate gets smaller, its spectral content increases, so that the TREEFROG
trace gets wider in the spectral dimension. The longer gate pulse (c), with its narrow spectrum, resolves spectral oscillations that
are washed out in the traces made with shorter gate pulses.
pulses, which have a narrow spectrum, have the opposite
effect.

In TREEFROG, we generate a signal field from the
nonlinear mixing of two optical fields, which we write
here, letting P represent the probe and G the gate, as

Esigst, td  P stdGst 2 td . (1)

The nonlinear interaction in TREEFROG can be any
fast nonlinearity.10 For example, in TREEFROG, with a
polarization-gate beam geometry, P std  Epstd and Gstd 
jEgstdj2, where Epstd and Egstd are the electric fields of
the probe and the gate, respectively. In this work, how-
ever, we use second-harmonic generation (SHG), which
has been used to perform FROG measurements11,16,17 and
that has P std  Epstd and Gstd  Egstd. The TREEFROG
trace is the magnitude squared of the spectrum of the
signal field:

ITREEFROGsv, td 

É Z `
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dtEsigst, tdexpsivtd

É 2

. (2)

The task of the pulse-retrieval algorithm is to find both
P std and Gstd from ITREEFROGsv, td. Unfortunately, pre-
vious algorithms such as those used for FROG do not
suffice. Fortunately, the mathematical problem repre-
sented by Eqs. (1) and (2) has been solved in an image sci-
ence setting, in which it has been shown that this problem
is equivalent to two-dimensional blind deconvolution, for
which algorithms exist.14,18 The TREEFROG algorithm
that we use is a modification of one such algorithm.

The TREEFROG algorithm begins with guesses for
the fields P std and Gstd and generates Esigsv, td, Fourier
transforming Eq. (1) with respect to t. On each iteration,
we replace the magnitude of Esigsv, td with the square
root of the experimentally measured TREEFROG trace
intensity, but leave the phase unchanged, to yield a modi-
fied signal field E 0

sigsv, td. An inverse Fourier transform
with respect to v generates E 0

sigst, td. We then use the
method of generalized projections19 – 21 to generate new
guesses for the fields. Specifically, we formulate an er-
ror function Z, as

Z 
NP

t,t1
jE 0

sigst, td 2 P stdGst 2 tdj2 . (3)

The implementation of generalized projections proceeds
by modification of only one of the fields, P std or Gstd, on a
given iteration.18 On the even iterations we generate a
new guess for P std by minimizing Z with respect to P std,
and on the odd iterations we generate a new guess for
Gstd by minimizing Z with respect to Gstd. The algorithm
continues until the resulting TREEFROG trace matches
the experimentally generated trace (or until the error
between these two reaches a minimum).

In a series of numerical simulations, we found that us-
ing the spectra of the fields (an easily measured quantity)
as an additional constraint improved the convergence of
the TREEFROG algorithm considerably. On iterations
in which one field is modified through the use of gen-
eralized projections, we also replace the spectrum of the
other field with its measured spectrum just before the ap-
plication of the generalized projection [the minimization
of Eq. (3)]. Including spectral constraints in this man-
ner removes potential ambiguities22 and appears to make
the TREEFROG algorithm quite robust. Measurement
of these spectra can be achieved easily with the same
spectrometer and camera that record the TREEFROG
trace and hence does not complicate the apparatus sig-
nificantly. We also emphasize here that we make no as-
sumptions regarding the pulses; the above algorithm is
completely general.

We have demonstrated TREEFROG experimentally
by using SHG as the nonlinearity in a multishot con-
figuration (although a single-shot arrangement should
be straightforward). The experimental setup is dia-
grammed in Fig. 2. A beam from a Spectra-Physics
Tsunami Ti:sapphire laser oscillator operating at 757 nm
was split into two beams, a probe and a gate. The gate
beam was passed through a variable time delay and a
6.5-cm length of BK7 glass. The two beams were then
focused into a KDP frequency-doubling crystal, and the
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sum-frequency light was frequency resolved by a spec-
trometer. Recording this spectrum for all relevant de-
lays between the two beams resulted in the TREEFROG
trace seen in Fig. 3. Unlike SHG FROG,10,11,17 the SHG
TREEFROG trace acquires a tilt from chirp, because the
probe and the gate fields are different.

We were able to retrieve the time-dependent intensity
and phase of both the gate and the probe fields by using
the TREEFROG algorithm described above. As propaga-
tion through BK7 glass leaves the spectrum of this pulse
unchanged, we used the same spectrum to constrain both
the probe and the gate fields. Also, because inevitable
noise in the measured spectrum caused the spectrum-
constraining process to introduce excess noise into the
fields, after the algorithm reached what appeared to be
its lowest obtainable error (after 100 iterations) we per-
formed six additional iterations of the algorithm without
the spectral constraint. This served to reduce the noise
in the retrieved fields. The final error G (as defined in
Ref. 17) was 0.00194 (on a 128 3 128 pixel trace).

The retrieved fields are shown in Fig. 4. To verify
these fields, we first independently made SHG FROG
traces17 of the oscillator beam with and without the
BK7 present in order to determine the intensity and
the phase of each field separately for comparison with
the TREEFROG result. Figures 4(a) and 4(b) show the
probe and the gate fields, respectively, each measured

Fig. 2. Experimental arrangement for SHG TREEFROG. The
probe pulse is chirped by propagation through 6.5 cm of BK7
glass. The cross-correlation signal generated through SHG is
frequency resolved to yield the TREEFROG trace.

Fig. 3. Experimentally measured TREEFROG trace.
Fig. 4. Fields of the (a) probe and (b) gate retrieved by the use
of TREEFROG compared with the fields retrieved by the use of
standard SHG FROG. The agreement is quite good.

with TREEFROG and independently with FROG. The
quite remarkable agreement between the fields retrieved
with TREEFROG and the fields derived with SHG FROG
indicates that the TREEFROG algorithm was quite suc-
cessful at retrieving the intensity and phase of both the
probe and the gate fields.

We can use the TREEFROG results to measure the
group-velocity dispersion of BK7 glass. By performing
a quadratic fit to the phases of the TREEFROG-derived
fields in Fig. 4 over the wavelength range 745–770 nm,
we can calculate the dispersion parameter b2 to be
393 fs2ycm for BK7 glass.23 The actual value of b2 for
BK7 is 487 fs2ycm.24 The value obtained by a similar cal-
culation from the phases of the two FROG-derived fields
yield 490 fs2ycm. In this case, the FROG-derived phase
is closer to the correct value than the TREEFROG-derived
phase is. However, there is no fundamental reason that
this should be so. Given proper convergence of the al-
gorithm, TREEFROG should have the same flexibility as
FROG in measuring phases, including higher-order and
other complicated phases. The ability of FROG to re-
trieve the proper phase from a noisy trace has been well
documented25; TREEFROG is expected to have similar
accuracy.

In conclusion, we have proposed and demonstrated a
method we call TREEFROG for simultaneously measur-
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ing the intensity and the phase of two independent ul-
trashort laser pulses. TREEFROG should operate well
with all FROG geometries10 and should have a variety of
applications in experiments that require full characteri-
zation of both input and output pulses, even when one of
the pulses is relatively weak.
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