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Practical Issues in Ultrashort-
Laser-Pulse Measurement Using
Frequency-Resolved Optical Gating

Kenneth W. DeLong, Member, IEEE, David N. Fittinghoff, and Rick Trebino

Abstract— We explore several practical experimental issues
in measuring ultrashort laser pulses using the technique of
frequency-resolved optical gating (FROG). We present a simple
method for checking the consistency of experimentally measured
FROG data with the independently measured spectrum and
autocorrelation of the pulse. This method is a powerful way of
discovering systematic errors in FROG experiments. We show
how to determine the optimum sampling rate for FROG and show
that this satisfies the Nyquist criterion for the laser pulse. We
explore the low- and high-power limits to FROG and determine
that femtojoule operation should be possible, while the effects of
self-phase modulation limit the highest signal efficiency in FROG
to 1%. We also show quantitatively that the temporal blurring
due to a finite-thickness medium in single-shot geometries does
not strongly limit the FROG technique. We explore the limiting
time-bandwidth values that can be represented on a FROG trace
of a given size. Finally, we report on a new measure of the FROG
error that improves convergence in the presence of noise.

I. INTRODUCTION

HE USEFULNESS of a new scientific technique is de-
Ttermined by the details of its implementation. Many
clever techniques that are otherwise rigorous and sound fail
to become useful workhorse laboratory techniques because of
difficulties in experimental implementation, noise sensitivity,
cumbersomeness, or other more fundamental limitations. Often
these details go unreported, resulting in a loss of valuable
time and resources for research groups that attempt to use the
technique. It is therefore incumbent upon the developers of
a new experimental technique to determine whether practical
limitations will render the technique less than ideal, and it is
crucial that this information reach the scientific community. In
this work, we shall examine one such recently developed tech-
nique for measuring the intensity and phase of an ultrashort
laser pulse.

Recently, there have been major advances in the mea-
surement of ultrashort laser pulses. Several techniques that
give the complete time-dependent intensity and phase of an
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ultrashort laser pulse have been developed [1]-[5]. One of
these techniques, frequency-resolved oprical gating (FROG),
is mathematically rigorous and can ope:ate on a single-shot
basis [6]. FROG involves a simple experimental setup coupled
with the use of a phase-retrieval-based algorithm [7]-[9] to
retrieve the intensity and phase of laboratory laser pulses. It
has been demonstrated in experiments from the mid-infrared
[10] to the ultraviolet [11], [12], and on pulse lengths from
sub-10 fs to several picoseconds. FROG has been used to
align and characterize chirped-pulse amplifier systems [13], to
study high-intensity light-matter interactions, and to explore
the nature of modelocking in ultrashort-pulse laser oscillators
[14].

In our experience developing FROG, we have identified
many of the practical issues involved in the everyday use of
FROG. We have also worked with several different research
groups that were implementing FROG in their laboratories,
allowing us to add the benefit of their experience to our
own. The questions discussed in this paper are ones that were
commonly asked of us by research groups attempting to use
FROG as a tool, as well as ones that we asked of ourselves.
These include questions such as “How can we tell if our FROG
data is valid?” “How densely should we sample the FROG
trace?” “What limits the minimum and maximum intensities
that can be used with FROG?” “What is the effect of the finite
thickness of the nonlinear medium?” “Can a pulse of arbitrary
complexity be represented on a FROG trace?” It is the purpose
of this paper to answer practical questions such as these.

After reviewing the basic concepts of the FROG technique
for the various experimental geometries, we present a sim-
ple and powerful technique to check the consistency of the
FROG data with an independently measured spectrum and
autocorrelation of the pulse. We show how these checks can
uncover systematic errors in the measurement apparatus that
might otherwise go undiscovered. We then discuss the data-
sampling rate for FROG and show that FROG satisfies the
Nyquist-sampling rate, ensuring that full information about
the pulse is available. We also determine the upper and lower
limits to the sampling rate in order for the FROG data to be
properly sampled. We then explore some fundamental limits
to the FROG technique. We explore the low-power limits to
FROG and find that in its most sensitive incarnation FROG
may break the 1 pJ barrier for 100-fs pulses. On the other end
of the scale, we find that the upper limit to allowable FROG-
signal efficiency is about 1% and is limited in x® geometries

0018-9197/96$05.00 © 1996 IEEE



1254

by self- and cross-phase modulation-induced distortion. We
then calculate the effect of the finite thickness of the medium
used to generate the FROG signal and find that this is not a
severe limitation to the measurement of pulses using FROG.
We also compute the maximum time-bandwidth product for
pulses that can be properly represented on a FROG trace of
a given size. This maximum (rms) time-bandwidth product
ranges anywhere from 3 to 20 for a FROG trace of 128 x 128
pixels and varies strongly with the form of the pulse itself and
the size of the trace. Finally, we present a slightly modified
form of the FROG error that allows for more robust pulse
retrieval in the presence of noise.

II. Basics oF FROG

The FROG technique consists of two parts: an experimental
apparatus that generates a “FROG trace” of a laboratory laser
pulse and a phase-retrieval-based algorithm that takes this
FROG trace as an input and yields the time-dependent intensity
and phase of the pulse that generated the trace.

Experimentally, FROG data are obtained by taking the
spectrum of a signal field, generated by a nonlinear auto-
correlation signal of two replicas of the pulse to be mea-
sured, for all relevant values of the time delay between the
two replicas. To date, four FROG geometries have been
demonstrated: polarization-gate (PG) [6], self-diffraction (SD)
[12], [15], second-harmonic generation (SHG) [16], [17],
and third-harmonic generation (THG) [18], although other
geometries are possible [19]. In PG FROG, where the signal
field is generated by Kerr-effect polarization rotation, as in
polarization spectroscopy, the signal field has the form

Egg (t,m) = EMIE(t - 7). M
When self-diffraction is used, the signal field is
SD _ 2 *
Esig (ta T) =FE (t)E (t - T) (2)
while in SHG FROG, the signal field is
SHG —
Egg (6 m) = EQE(t — ) €]
and for third-harmonic generation we have
THG _ 2
Esig (t7 T) =FE (t)E(t - T)' (4)

This signal field is then frequency-resolved by a spectrometer
to yield the FROG trace

2

rroa(w, ) = ’ / ¥ Bt ) exp (wb)| . )

The FROG trace is a spectrogram of the pulse, a type of
time-frequency distribution [20] that contains all relevant
information about the pulse.

This experimentally measured FROG trace is then used
as input to an algorithm that inverts the trace to yield the
time-dependent intensity and phase of the pulse. The FROG
algorithm is based on the iterative-Fourier-transform algorithm
pioneered in the field of phase-retrieval [21]. As first reported,
the FROG algorithm was useful only for PG FROG [7].
However, the application of powerful techniques such as the
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method of generalized projections has resulted in an algorithm
that works well for PG, SD, SHG, and THG FROG [8], [9],
[18].

III. REDUNDANCY AND ERROR DETECTION IN FROG

We have used the FROG algorithm to retrieve thousands
of pulses, both simulated and experimental, and we wish to
stress that for valid data, the algorithm has never failed to
converge. In our experience, the only times that the algorithm
does not converge is for undersampled (aliased) pulses or
for experimental data that is excessively corrupted by noise,
incorrectly calibrated, truncated, distorted, or contains some
other systematic or large random error. This is in fact a
unique advantage of the FROG method: if the algorithm does
not converge, one can be sure that an error exists in the
data-collection apparatus, while if the algorithm converges
well it nearly guarantees that the correct result has been
found. The reason for this is that an electric field sampled
at N points has 2N degrees of freedom (N points of both
magnitude and phase), but corresponds to a FROG trace with
N? pixels. Thus, there is great redundancy in the FROG trace
(it is overdetermined), meaning that there are many more
possible “FROG traces”—configurations of N? pixels—than
are allowed by a physically realizable electric field. Thus,
a real FROG trace with some systematic or random error
added to it most likely will not correspond to a physically
valid FROG trace, leading to nonconvergence of the algorithm,
while convergence of the algorithm nearly guarantees that the
measurement was accurate and free of artifacts.

Typically, the algorithm converges to the closest physically
valid FROG trace to the input trace. In the presence of random
noise, the algorithm often converges to a trace that is closer
to the noise-free trace than the original (noisy) input data
[22]. In the case of systematic noise, the distorted FROG
trace is almost always quite unlike any physically valid trace,
leading to nonconvergence of the algorithm. Fortunately, there
are ways to detect this type of systematic error, even before
running the algorithm, as we shall see below.

The redundancy in the FROG trace allows for several
types of checks on the accuracy of the data. When analyzing
experimental FROG data, in the majority of cases we have
discovered systematic errors in the data-collection apparatus
simply from inspection of the FROG trace and its marginals
(see Section IV), allowing us to “debug” experiments re-
motely. In methods that do not provide such checks, these
errors would probably have gone undiscovered. Far from
being a disadvantage, the two-dimensional, redundant nature
of the FROG data set gives us the powerful ability to detect
systematic errors in the experimental setup.

This sensitivity to systematic experimental errors is a crucial
part of the diagnostic power of FROG. The FROG tech-
nique consists of a pump-probe-type process followed by the
measurement of the spectrum. If one is unable to do these
two experiments correctly (due to spatial chirp in the beam,
incorrect calibrations, beam distortions at the focus, etc.), then
it is unlikely that any other experimental results generated by
the apparatus will be valid, as almost all experiments require
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a pump-probe and/or spectral measurement. For example, an
autocorrelation made using this apparatus will be in error,
although (unlike in FROG) no indication of this will generally
be available. Thus FROG allows an extremely germane check
on the performance of the experimental apparatus.

IV. SELF-CONSISTENCY CHECKS
FOR FROG DATA: THE MARGINALS

The fact that the FROG trace contains redundant data (i.e., it
is overdetermined) allows for some fairly simple, yet powerful,
checks on the consistency of the experimental data. These
checks involve the marginals, which are the one-dimensional
curves obtained by integrating the FROG trace over one of
its coordinates. The marginals can be compared to quantities
involving the pulse’s spectrum and autocorrelation. When
these easily computed quantities agree, one can be fairly sure
of the consistency of the data. The more useful of the two
marginals is the frequency marginal

M(w) = / drIrrog(w, T) 6)

-0
obtained by integration of the FROG trace over the delay
variable.

The form of the marginals was explored in an earlier work
[19]. As an example, we consider here the case of SHG FROG,
which is perhaps the easiest to understand. In this case, the
frequency marginal should have a functional form identical to
the autoconvolution of the pulse spectrum I(w)

Q)

where wq is the carrier frequency, the asterisk denotes con-
volution, and we have used (3), (5), and (6). Therefore,
by simply measuring the fundamental pulse spectrum, one
can easily check the consistency of the FROG data. If the
SHG FROG frequency marginal does not agree with the
autoconvolution of the pulse spectrum, one can be assured
that there is a systematic experimental error somewhere in the
system. Some typical possibilities are incorrect wavelength or
temporal calibrations of the FROG data, a spectrometer/camera
response that varies with wavelength, insufficient doubling-
crystal bandwidth, spatial chirp, spatio-temporal distortions
of the pulse at the focus, etc. Under these conditions, it is
illogical to expect that the spectrum of the field retrieved by the
FROG algorithm should match the experimentally measured
spectrum—-the failure of (7) indicates that the experimental
SHG FROG data are inconsistent with the measured pulse
spectrum.

In the PG and SD FROG geometries, the same sorts
of consistency checks are available. The exact form of the
frequency marginal varies with the type of geometry, however.
In the case of PG FROG, the frequency marginal has the form

Mpa(w —wo) = I(w — wo)* T{A® (1)} (8)

where 7 - indicates Fourier transform and A()(7) is the usual
second-order intensity autocorrelation. Thus in PG FROG, it
is possible to check the consistency of the FROG data with
both the spectrum and the autocorrelation of the pulse through

Msue(w — 2wo) = I{w — wo) " I{w — wy)
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a simple convolution of these two quantities. In SD FROG,
the frequency marginal is

Msp(w — wo) = I{—w + wo)* Isu(w — 2wo) €)
while for THG FROG we find
MTH(;(w - u)o) = [(w - wo)*lg.H(w — 2wg) (10)

where Isy(w) is the spectrum of the second harmonic of
the pulse. When using the marginals as a check on the
data consistency, it is important to remember to center all
spectra on the same carrier frequency wg and to interpolate
laboratory spectra to a constant frequency spacing. In the case
of extremely broadband light, in additiorn to merely changing
the abscissa of the data, this also involves a nonlinear scaling
factor
)\2

Iw(w) - %1)\()‘)|>\:27:C/w (11)
to change from a spectrum sampled on a constant-wavelength
interval (as most spectrometers yield) to one sampled on
a constant-frequency interval [as needed for a fast Fourier-
transform (FFT)].

In order to illustrate the usefulness of the marginals, we mul-
tiplied the SHG FROG trace of a self-phiase-modulated pulse
by a Gaussian spectral-response function. This sort of spectral
distortion is often encountered in practice, since spectrometers
optimized for flat response at the furdamental frequency
rarely perform well at the second-harmonic frequency. The
frequency marginal of both the original trace and the distorted
trace are plotted in Fig. 1(a), along with the spectral-response
function. When this distorted FROG trace was input into the
algorithm, a distorted pulse was retrieved. The results are
seen in Fig. 1(b), where we see that the retrieved spectrum,
not surprisingly, does not match the mzasured fundamental
spectrum. The fact that the retrieved spectrum does not match
the measured spectrum would perhaps be mistaken for a failure
of the algorithm, when in fact it is a systematic error in
the data. The algorithm does not converge to arbitrarily low
FROG error for a distorted trace such as this; however, a
priori it is difficult to tell whether the failure to converge is
the result of excessive experimental noise (which leads to a
nonzero FROG error [22]) or a systemati error in the data. A
comparison of the frequency marginal and the autoconvolution
of the spectrum, as in Fig. 1(a), shows unambiguously that
the problem lies with the data (and thus in the experimental
apparatus) rather than with the algorithm. Thus, the marginals
provide a powerful check on the experimental apparatus.

V. FROG SAMPLING RATE

The issue of sampling in a time-frequency technique such
as FROG is a subtle one. Before we directly address this
issue, there are some basic terms and concepts that must be
established.

The FROG trace is considered properly sampled when the
data are not truncated, i.e., all the nonzero FROG data lie
within the FROG-trace grid. Of course, in a strict mathematical
sense, FROG-trace data never go to zero: the FROG trace of
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Fig. 1. (a) The autoconvolution of the fundamental spectrum and the fre-

quency marginal of the FROG trace after multiplication with an exponentiaily
varying spectral response (dashed line). (b) The true fundamental spectrum
of the pulse and the spectrum of the pulse retrieved from the distorted SHG
FROG trace.

a Gaussian pulse, for example, decays like a Gaussian in all
directions. As a practical criterion, we will consider FROG-
trace data to be properly sampled when all of the data points
with an intensity 10™* of the peak of the trace or greater are
contained on the FROG-trace grid. A data set that satisfies this
criterion is said to satisfy the FROG sampling rate (FSR). A
FROG trace that satisfies the FSR completely determines the
intensity and phase of the pulse that created it, as we shall
show.

A similar criterion that arises in signal processing is the
Nyquist criterion [23]. A band-limited function is properly
sampled if the sampling rate is at least as high as the so-
called Nyquist rate, where the highest frequency occurring in
the signal is sampled at least twice per period. In this case,
the discrete samples of the signal contain all the information
about the signal; sampling at a higher rate, noise considerations
aside, produces no new information. Note that a signal sampled
at the Nyquist rate is not necessarily aesthetically pleasing; a
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sine wave sampled twice per period looks like a sawtooth,
while a Nyquist-sampled Gaussian has only one point above
the half-maximum and only five points larger than 1% of
the peak! (Note that a Gaussian can never be a band-limited
function, as it has infinite extent in both time and frequency.
However, in analogy with the FROG trace, we can consider the
10~* points of the spectrum as the “band limit.””) Nevertheless,
despite their jagged appearance, these sampled signals contain
complete information about the original waveform.

The FSR is a stricter criterion than the Nyquist rate. A pulse
sampled at the Nyquist rate will have FROG-trace data that
are truncated at significant energies: the data are not fully
contained on the FROG-trace grid, and thus the FSR is not
satisfied. In order to get all of the data on the grid and satisfy
the FSR, the pulse must be sampled at a higher rate than
the Nyquist rate. This means that any FROG-trace data that
satisfies the FSR automatically contains all the information
about the pulse. No new information is gained (except perhaps
noise immunity) by sampling at higher rates.

The FSR actually comprises two limits to the sampling of
the data. First, the data must be sampled with a small enough
temporal step A¢ so that the data do not extend off of the
FROG-trace grid in the frequency direction (the temporal step
size and the full frequency width of the FROG-trace grid are
inversely related). For a Gaussian spectrum and PG FROG,
this occurs when

2
At < L ~ Ao
= 6.3f, 6.3ch,

(12)

where A is the central wavelength and A, (f,) is the FWHM
of the spectrum in wavelength (frequency). If the pulse is
transform limited, this becomes ¢,/At > 2.78, where ¢, is
the FWHM of the pulse temporal width. The second limit
inherent in the FSR is that the temporal-sampling step size be
large enough that the FROG-trace data do not extend off the
grid in the time-delay direction. For a Gaussian pulse in time,
this evaluates to

4.5t
At > —2
- N

13)

for PG FROG. Thus, for a Gaussian transform-limited pulse
of 100-fs FWHM, the temporal step size used to generate the
FROG-trace data must lie between 7 fs and 36 fs for a 64
x 64 grid.

In general, then, the procedure for selecting the sampling
rate and grid size for an arbitrary pulse is as follows. First,
the upper limit for the temporal step size is set by (12). The
minimum grid size N is then selected so that the extent of
the FROG-trace grid in the delay direction contains all of the
nonzero FROG-trace data. If the pulse is complex enough that
both limits cannot be satisfied simultaneously, the grid size
N must be increased. The numerical factors in (12) and (13)
were calculated for Gaussian pulses; other pulse and spectral
shapes will have slightly different FSR limits. Differing FROG
geometries will also have slightly different FSR’s.

Sampling a pulse close to both limits of the FSR, so that
the data nearly fill the FROG-trace grid, allows one to use a
very small-size FROG-trace grid. (The FSR can be satisfied
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Fig. 2. The intensity as a function of (a) time and (b) frequency for a transform-limited Gaussian pulse sampled near the FROG sarapling-rate limit. The pulse
had a FWHM of 3.16 pixels in the time domain on a 16 X 16 pixel grid. In both the time and frequency domain, the pulse profile is jagged and not aesthetically
pleasing. (c) The time-domain field in (a) was padded with zeros to fit in a 256-clement array and then Fourier-transformed to give this spectrum. The spectrum
is now densely sampled and looks quite Gaussian. Although the field in (a) and (b) looks undersampled, the information content is equivalent to that in (c).

for a transform-limited pulse in PG FROG on a 16 x 16
pixel trace!) Using a smaller number of pixels is of great
advantage in retrieving the pulse: the FROG algorithm slows
down as N21In (N). However, the resulting retrieved pulse
will look jagged and decidedly un-Gaussian in both the time
and frequency domain.

One way to avoid the jaggedness in the output field is to
sample at a greater rate than the FSR. This necessarily involves
going to a larger grid size for the FROG trace. If the temporal
sampling rate is kept constant while moving to a larger grid,
the spectrum of the pulse will be sampled at a higher rate
(because the frequency increment is the reciprocal of the
temporal range). If the temporal sampling rate is increased
commensurate with the increase in the size of the FROG
trace (keeping the temporal range the same), then the sampling
rate in the frequency domain will remain constant (while the
temporal rate increases). However, this method of increasing
the grid size extracts its toll in the slowing down of the FROG
algorithm.

A better solution to this problem is to sample the pulse
at a rate near the FSR: use a FROG-trace grid that is small
enough that the FROG-trace data nearly fill the grid. Pulse
retrieval using the algorithm will be swift on a small grid,
but the output fields will look jagged. The jaggedness of
the retrieved field can be eliminated, however, by taking
advantage of the completeness of a Nyquist-sampled field.
Specifically, in order to get a higher point density in the
frequency domain, simply pad the E'(t) returned by the
algorithm with zeros on the left and right and put it into a
larger array before Fourier-transforming E(¢) to obtain E(w).
A high-point density in the time domain can be achieved by
similarly padding the field in the frequency domain before
inverse Fourier-transforming to the time domain. This is a
valid procedure, at least to the orde: of the approxima-
tions that we made for band-limited functions above (i.e.,
truncation at or below the 10™% level). Thus, it is straight-
forward to obtain as many data points as desired in each
domain.
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This procedure is illustrated in Fig. 2. Fig. 2(a) shows a
Gaussian transform-limited pulse sampled so that its intensity
FWHM is 3.16 pixels. This pulse satisfies the FSR for a
16 x 16 pixel grid. Both the temporal and spectral intensity
[Fig. 2(b)] are quite jagged, yet are sampled at a higher rate
than the Nyquist rate. Fig. 2(c) shows the spectrum of the exact
same field, where the field in the time domain was padded out
to 256 pixels before the Fourier transform to obtain £ (w). We
see that the spectrum is now extremely smooth and densely
sampled. Fig. 2(b) and (c) display the same waveform and the
same information but have a quite different appearance.

One particularly pleasing sampling rate for FROG data
is one that makes the sampling rates roughly equal in both
domains. Equal sampling in both the time and frequency
domains could be defined as having the ratio of the delay
step size to the temporal FWHM of the pulse be the same
as the ratio of the frequency step size to the spectral FWHM
of the pulse. Therefore, equal sampling in both the time and
frequency domains is satisfied when the delay step size is
At = t,/M and the frequency step size Af = f,/M. On a
FROG trace of N x N pixels, the frequency step size is set
to Af = 1/(NAt) by the fast Fourier transform." A simple
calculation yields

t,A,Nc
M = \/t,f,N =~ %.

(s

(14)

For a transform-limited Gaussian pulse, the spectral FWHM
is defined in terms of the temporal FWHM ¢, as f, =

2In(2)/xt,, so that M = +/2NIn(2)/x. Note that for

this sampling, the SHG FROG-trace contours describe perfect
circles, while in PG FROG the contours are elliptical. For
pulses farther from the transform limit, the delay step size can
be decreased while still maintaining a reasonable frequency-
domain sampling rate.

Fig. 3 demonstrates this effect. In Fig. 3(a), we see the (64
x 64) PG FROG trace of a Gaussian transform-limited pulse
sampled in time at a rate of At = ¢,/20. The trace extends
over only a few pixels in frequency. In Fig. 3(b), we see the
same pulse sampled at the optimum rate of At = ¢,/53. In
this case, the trace (and hence the resulting fields) are sampled
evenly in both time and frequency.

It should be stressed that as long as the pulse satisfies
the FSR, the FROG trace contains equivalent (and complete)
information regardless of the sampling rate. It is only the visual
appeal of the trace and the resulting fields that is affected by
the choice of sampling rates. Also, intuitively we expect that a
trace of the form of Fig. 3(b) will have a more robust retrieval
in the algorithm than a trace like that in Fig. 3(a).

IFundamentally, the delay coordinate and the frequency coordinate are
not constrained by the fast Fourier-transform (FFT): the FFT relates the
temporal coordinate t to the frequency coordinate. In principle, one could use
a different step size when sampling the delay than when sampling the time ¢.
However, this will lead to many practical difficulties in the programming of
the algorithm, so that for convenience’s sake the step size in both delay 7 and
time ¢ are usually taken to be identical. This leads to an effective coupling,
through the FFT, of the delay and frequency axes. We assume this convention
throughout all of our papers.
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Fig. 3. Two PG FROG traces (64 x 64) of the same transform-limited
Gaussian pulse. The field in (a) was sampled at 20 points per temporal FWHM,
while the field in (b) was sampled at the optimum 5.3 points per temporal
FWHM. Although the two traces contain equivalent information, the trace in
(a) extends over only a few pixels in the frequency direction, while in (b)
there is a more even distribution between time and frequency.

VI. LIMITATIONS TO THE FROG TECHNIQUE

In this section, we shall explore some experimental lim-
itations to the FROG technique. As FROG uses a nonlinear
process to generate the signal field, there is a limit to the lowest
intensity pulse that can be measured with a given geometry.
We shall quantify some of these limits. Also, we will discuss
the issues of maximum allowable diffraction efficiency in the
x® experiments, the effects of a finite thickness for the
medium that generates the FROG signal, and the maximum
obtainable time-bandwidth products for a FROG trace of fixed
size.

A. Low-Power Limits

Because a nonlinear process generates the FROG signal
field, FROG requires a certain minimum power in the pulse to
be measured. The single-shot version of FROG requires more
power in the pulse than the multishot version, because in the
single-shot version the pulse is focused to a line focus instead
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TABLE 1
Low-POwER LMITS TO FROG
FROG geometry multishot signal avg. single-shot true single-shot
SHG 190 W (15 pJ) 25 kW (2 nl) 3 MW* (240 nJ)
PG 6 MW (480 nJ) 45 MW (3.6 W)

*

of a point focus as in the multishot version. For a pulse of
given power, this results in a lower intensity at the nonlinear
medium for the single-shot case. Also, the minimum pulse
power necessary to generate a usable FROG trace will vary
with the geometry used. Second-order effects (SHG) require
lower intensities at the nonlinear medium than third-order
effects (PG, SD, and THG), so that SHG FROG can function
with lower pulse powers.

Multishot SHG FROG is the most sensitive of all the FROG
geometries. In our experiments, we used a KDP crystal as
the nonlinear medium. Pulses from a Ti:Sapphire oscillator
operating at 860 nm with 80-fs FWHM were split into two
beams by a beamsplitter and focused with a 200-mm focal-
length spherical lens onto a 300-pm-thick KDP sample. The
noncollinear SHG signal beam was collected and recollimated
with another spherical lens, dispersed by a grating, and focused
onto a Pulnix 8-b CCD camera. We were able to record SHG
FROG traces at a 40: 1 peak signal-to-dark-current-noise ratio
with our setup for peak pulse powers as low as 190 W (15 pJ
for our pulses) in each of the two beams. The 96-MHz pulse
train is averaged over the camera read-out time of 16 ms. The
spectrum covered approximately 50 pixels on the camera.

The apparatus was not optimized, and further gains in
sensitivity could be realized through the use of a crystal with a
higher nonlinearity, tighter focusing, or using a more sensitive
or less noisy camera (our 8-b camera produced about 5 counts
of dark current per pixel over a measurement period). With
these improvements, we expect that multishot SHG FROG
traces could be made for pulses in the femtojoule range when
the pulse length is 100 fs or shorter.

In the single-shot SHG FROG configuration, we were able
to record FROG traces for input-pulse powers as low as 25 kW
(2 nJ for our pulses) when using signal averaging of the 96-
MHz pulse train over the 16-ms camera read-out time. From
these numbers, we anticipate that true single-shot operation
should be available for pulse powers of 3 MW.

In PG FROG, a multishot geometry using 1 mm of UV-
grade fused silica as the nonlinear medium produced accept-
able signals for a total input power of 300 nJ for 45-fs pulses
(6-MW peak power). This experimental setup used a 150-
cm focal-length lens to focus the beams into the sample.
Single-shot PG FROG was reported in [6].

Our results for the low-power limits to FROG are summa-
rized in Table L

More slowly responding nonlinearities usually have much
stronger responses than instantaneous nonlinearities; however,
the use of very slowly responding nonlinearities, such as pho-

indicates values extrapolated from other entries in the table (see text).

torefractives, is contraindicated in FROG. It has been shown
that for these very slow nonlinearities, the only information
available is the frequency spectrum of the pulse [24].

B. Signal Efficiency Limit

In PG and SD FROG, the signal efficiency of the process
used to generate the FROG signal field cannot be made arbi-
trarily high, even if the pulse energy is high, because the same
fundamental mechanism that is responsible for generating the
signal field is also responsible for self- ard cross-phase modu-
lation, which distort the pulse spectrum and hence the FROG
trace. Here, we make a simple estimate (ignoring propagation
effects) of the maximum signal efficiency available without
significant distortion of the pulse being measured. We calculate
the FROG signal efficiency as a function of the maximum gate-
beam-induced phase change A¢ of the probe beam. We then
calculate the amount of pulse distortion for a given amount
of cross-phase modulation, which is also measured by Ad.
In this way we can place an upper limit to the FROG signal
efficiency.

In PG FROG, the signal efficiency is easily found to be
n = (A¢p)?/4, where Ap = konoIL, and ko is the vacuum
wavevector, no is the nonlinear refraciive index, I is the
intensity of the gate pulse, and L is the length of the medium.
To estimate the effects of cross-phase modulation for a given
value of A¢, we examine a Gaussian pulse with a time-
dependent phase of ®(t) = A¢I(t), where I(¢) is the intensity
of the pulse normalized to a peak of unity. The results of
numerical calculations are summarized in Table II. Because
the time-domain intensity profile is unaffected, the amount
of spectral broadening is equal to the increase in the time-
bandwidth product.

We see that in order to keep the rms spectral broadening
less than 1.5%, A¢ must be kept belovws 0.2 radians, which
corresponds to a peak signal efficiency of (0.2)2/4 or 1%.
This is a much higher limit to the signal zfficiency than (erro-
neously) previously reported [6]. In SD FROG, the argument is
essentially identical. The limits to maximum signal efficiency
in SHG FROG (again, about 1%) stem from pump-depletion
considerations and were discussed earlier [16].

C. Finite-Thickness Medium

In the single-shot configuration of FROG, the time resolu-
tion is limited by the finite thickness of the medium used to
generate the FROG signal. Due to the differing propagation
directions of the two beams, they experience differing delays
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TABLE 1I
SIGNAL-EFFICIENCY LiMITs IN THIRD-ORDER FROG
peak signal Spectral broadening

Ad efficiency rms FWHM
0.2 rad 1% 1.5 % 0.16 %
0.6 rad 9% 13 % 1.4 %

Probe beam 4 The blurring of the time delay is equivalent to a blurring of
,

Gate beam

LY

Fig. 4. Origin of the time “blurring” in single-shot FROG measurements.
The probe beam (black) propagates a distance d through the medium, while
the gate beam (gray) propagates a distance I. This results in a blurring of
the time delay at any given spatial coordinate (dotted line) due to the finite
thickness of the medium.

as they propagate through the medium [25] (see Fig. 4). This
leads to a “blurring” of the time delay. This effect will increase
with the thickness of the medium. Here we calculate the
amount of blurring and demonstrate its effects on the FROG
pulse-retrieval process.

In the single-shot PG FROG geometry, the probe beam is
typically incident on the nonlinear medium in a perpendicular
fashion, while the gate beam propagates at an (internal) angle
6 with respect to the probe beam. Although the time delay is
nominally encoded along the transverse spatial coordinate, the
differing propagation distances (d for the probe beam, and ¢
for the gate beam, as seen in Fig. 4) of the two beams through
the finite thickness medium cause each spatial point to sample
a range of blurred time delays. For a medium of refractive
index n and thickness d, the blurring of the time delay is

AT = n—d(l — cosf)
c

2nd sin? 6
= ——3l —
c 2
92
M < (15)

where ¢ is the speed of light. The signal field leaving the
medium will then be blurred such that

T+AT/2
Eblurred(t, ) = / dT/Esig<t’ ) (16)

sig
—AT/2

where Esig(t, 7) is the signal field from (1).

the gate pulse. Note that we can write the signal field as

Esig(t7 T) = E(t>G(f - T) (17)

where G(¢) is the gate function, which takes on various forms
depending on the FROG geometry used according to (1)—(4).
Then (16) becomes
T+AT/2
ESymed(t, T) = B(t) / dr'G(t -1 (18)
T—AT/2
so that the effect of the blurring along the delay coordinate is
equivalent to a blurring of the gate function.

In order to quantify the effect of this blurring on the PG
FROG pulse-retrieval process, we used numerically simulated
pulses and integrated the signal field according to (16) before
generating a FROG trace. We then used this distorted FROG
trace as input to the pulse-retrieval algorithm and monitored
the distortion of the retrieved pulse as a function of the amount
of delay blurring A7. The results are seen in Table IIL

The effect of the blurring is remarkably small. For a
transform-limited Gaussian pulse of intensity FWHM ¢,
the retrieved pulse was broadened by a factor of roughly
0.1A7/t,. In other words, a At that was 10% of the FWHM
of the pulse resulted in only a 1% broadening in the retrieved
pulse. This relationship held for values of A7 /%, of up to 0.6.
Even for At = ¢, the resultant broadening in the retrieved
pulse was only 15%. For a linearly chirped Gaussian with
an rms time-bandwidth product of over 1.5 (transform limit
is 0.5), the results were essentially the same, with less than
1% distortion for a blurring of A7 < 0.3f,. For this pulse,
a blurring of At = ¢, led to a 12% broadening of the
FWHM and a 9% error in the quadratic-phase coefficient
of the retrieved pulse. Thus we can conclude the limitations
imposed by blurring of the temporal delay in a finite-thickness
medium are not severe.

Fig. 5 shows a pulse retrieved by the FROG algorithm when
the signal field was blurred by an amount equal to half the
original pulse width, or A7 = 0.5¢,. The very small amount
of broadening in the retrieved pulse illustrates the relatively
small effect of the finite medium thickness in FROG.

This remarkable insensitivity to the blurring along the delay
coordinate is reminiscent of the insensitivity of SHG FROG
to blurring along the temporal coordinate (in this case due to
group-velocity mismatch between the fundamental and second
harmonic), reported in [16]. There also it was found that a
blurring of the temporal coordinate by a window with a width
equal to the FWHM of the pulse resulted in only a 10%
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TABLE III
EFFECTS OF FINITE MEDIUM THICKNESS

delay blurring At transform-limited linearly-chirped
021, 1.3 % 0.9 % (< 1 %)
047, 3.2% 1.6 % (2%)
0.61, 6.3 % 5.3 % (3.8 %)
0.87, 10.4 % 7.5 % (6.3%)
101, 153 % 11.5% (9.3 %)

The numbers in parentheses represent the error in the quadratic coefficient of the
retrieved temporal phase. ¢, is the pulse length.

1.0 Original Field
) ~—@— Retrieved Field
0.8
2 0.6
@
5 -
£ 0.4
0.2
0.0 —peseer !
30 20 10 0 10 20 30
Time

Fig. 5. Effect of time-delay blurring on the retrieval of pulses. The solid line
is the original field, while the dotted line is the field retrieved by the FROG
algorithm after the signal-field time delay was blurred by a A7 of one-half
the FWHM of the original pulse. The very small amount of distortion in the
retrieved pulse indicates that FROG is highly insensitive to the effect of a
finite-thickness medium. The retrieved phase (not shown) is flat.

broadening of a transform-limited pulse. Evidently the phase-
retrieval algorithm at the heart of the FROG technique is quite
robust against these common systematic errors encountered in
experimental work.

Another effect that arises due to the finite thickness of the
nonlinear medium is group-velocity dispersion (GVD). This
will affect multishot as well as single-shot geometries. As
the pulse being measured propagates through the nonlinear
medium, it acquires a spectral phase, which is dominated by
the quadratic term (linear chirp), which causes the pulse to
broaden. From [27] and [28], we can calculate straightfor-
wardly the amount of broadening of the pulse due to GVD. If
we begin with a transform-limited Gaussian pulse and require
that the pulse is broadened by less than ¢, then the maximum
allowable thickness of the medium is

V2¢e 4 2

— 2
= )

452 ln(2)

where 7 is the original pulse FWHM and 3, is the dispersion
parameter of the nonlinear medium. For an allowable pulse

max

19)

o 800
o
=
(1]
o i
L
£
g
€ 400 —
a
s
o -
(=%
£
- _—
0 L B L —
0 5 10 15 20

Beam angle (degrees)

Fig. 6. The temporal-dynamic range for a beam diameter of D = 1 cm,
and a medium with a thickness d = 1 mm, and an index of refraction n =
1.5. The temporal-dynamic range is the ratio of the maximum allowable pulse
length (limited by the finite size of the beam) to the minimum allowable pulse
length (limited by the finite thickness of the medium).

broadening of 1% (¢ = 0.01), an original pulsewidth of 100 fs
at a wavelength of 800 nm, and using BK7 glass as a nonlinear
medium (B> = 495 fs?/cm), the maximum allowable length of
the medium is 1.03 cm. This is not a very strict limitation,
although the effect scales with pulsewidth squared, so that
this requirement becomes stricter for shorter pulses.

D. Temporal-Dynamic Range of FROG

The temporal resolution of the single-shot FROG technique,
as roughly given by (15), should be considered in conjunction
with the maximum time-delay range avzilable from the same
beam geometry. For a beam with a usable (flat intensity) width
D on the sample, the maximum time-delay range is easily
found from simple geometry to be

Dtand

&

AT = (20)

In order to get an accurate measurement of a pulse, its temporal
length must fall inside the range specified by Ar and AT, so
that the ratio

AT D ntané

A7 T d 2sin? (0/2) @D
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TABLE IV
MaxiMuM TIME-BANDWIDTH PRODUCTS FOR VARIOUS FROG TRACES
Pulse type PG SD THG SHG
Linear chirp 8.8 (7.8) 4.9(43) 4.8(4.2) 5.1(4.5)
Self-phase mod. 20 (20) 7.5 (7.6) 6.6 (6.7) 8.8 (9.0)
Spectral cubic 3.4(0.89) 3.0 (0.86) 2.6 (0.81) 3.3(0.87)
phase

forms a kind of “temporal-dynamic range” for the technique.
In Fig. 6, we have plotted the temporal-dynamic range for the
typical values D = 1 cm, d = 1 mm, and n = 1.5. The
temporal-dynamic range increases with decreasing crossing
angle and is 153 at a beam-crossing angle of 5°, where AT =
19 fs and AT = 2.9 ps. These values will be different for
different beam diameters D and medium thicknesses d, of
course. Note that multishot FROG geometries have no inherent
upper limit to the time delay (which is obtained through delay
lines) and thus sport an infinite temporal-dynamic range.

E. Maximum Time-Bandwidth Limit

A given digitized FROG trace of size /V cannot represent a
pulse with an arbitrarily large complexity. For pulses with too
large a time-bandwidth product (the time-bandwidth product
forms a convenient measure of pulse complexity), the trace
will have significant intensity off the edge of the FROG-trace
grid, and the pulse will be aliased in the time and/or frequency
domains (as discussed in the section on sampling). Therefore,
there is an upper limit to the time-bandwidth product of a
pulse that can be properly represented on a FROG trace
of a given size (number of pixels). We have numerically
determined these upper limits for FROG traces of several sizes.
(In making this calculation, we continue with our convention
of generating an N x N FROG trace from a field NV elements
long.)

The time-bandwidth products reported in this work are
usually quoted using both the full-width at half maximum
(FWHM) and the root-mean-square (rms) measures. The
FWHM (rms) time-bandwidth products utilize the linear
(angular) frequency, such that a transform-limited Gaussian
has a FWHM (rms) time-bandwidth product of 0.441 (0.5).
It should be noted that an rms time-bandwidth product of 0.5
is an absolute minimum for all waveforms, while the FWHM
time-bandwidth product can range quite low (a transform-
limited Lorentzian has a FWHM time-bandwidth product of
0.221, while its rms time-bandwidth product is 2.47). The rms
time-bandwidth product is a better measure for theoretical and
numerically generated pulses, while for experimental pulses
it can suffer from undue influence of noise in the wings of
the pulse.

We found that the upper limit for the time-bandwidth
product varies strongly with the form of the pulse. Therefore,
we used pulses with linear chirp, self-phase modulation, and

spectral-cubic phase. The results for a 128 x 128 FROG trace
are seen in Table IV for the four main FROG geometries.
The criterion chosen was that the intensity at the edge of the
FROG-trace grid was 10™% or less of the peak intensity. For a
FROG trace of N x N, we found that the maximum available
time-bandwidth product scales roughly with N, except for the
case of self-phase-modulated pulses, where it appears to scale
roughly like N'-?°. The algorithm was able to retrieve all of
the pulses with maximum time-bandwidth product. However,
it should be noted that these were noise-free, simulated pulses,
and the presence of noise may make these pulses more difficult
to retrieve (the amount of redundancy is minimal for data
that fills the FROG-trace grid). Therefore, with experimental
data, it is probably best to use a larger array when the time-
bandwidth product of the pulse approaches the maximum
value.

VII. A NOTE ON THE FROG ERROR

The FROG error (G is an important quantity, as it is used
in the algorithm to guide and monitor the retrieval and also to
measure the quality of the retrieved FROG trace. The FROG
error is computed as an rms average across the entire trace

N
_1 k
G = | 53 2 Mrroc(wi ) — aljog (@) 2 (22)
i.j=1

of the difference between the experimental FROG trace 1 S;EOG

and the retrieved or reconstructed FROG trace Irroc. Irroc
is always normalized to a peak of unity. In the case of numer-
ically generated data (i.e., noise free), the scaling parameter
« is selected so that II(JQOG is also normalized to a peak of
unity. In the case of experimental data, this is not appropriate.
The reason is that if the highest intensity pixel in Irroc
is corrupted by noise, the normalization of Irroc Wwill be
skewed, thus biasing the calculation of G and leading to
incorrectly retrieved pulses.

For experimental data, we use the following procedure. The
experimental data Jrroc are as usual normalized to a peak of
unity. On each iteration (labeled by k), the algorithm calculates
a new estimate for the retrieved FROG trace II(;QOG. When
calculating the error GG, the normalization of the retrieved trace
Ig;EOG is allowed to vary to a value that gives the minimum
value for the error . In other words, G is minimized with
respect to « on each iteration. This procedure reduces the
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sensitivity of the algorithm to the effects of noise-distorted
normalization in experimental data. Although the calculation
of the error on each iteration takes slightly longer than before
(due to the minimization), we find that the algorithm generally
converges in fewer steps, so that the amount of real time taken
is less.

The algorithm acts to minimize the value of G. In prac-
tice, two things can limit the lowest achievable ¢ for an
experimental trace. In the first case of noise-free data (no
random additive or multiplicative noise), the lowest retrievable
G will be limited by distortions, systematic errors, stray light,
and other deviations from a physically valid [one that obeys
(1)—(5)] FROG trace. It is difficult to quantify these sorts
of deviations or predict the effect on the retrieved pulse.
In the second case of perfect FROG data that is corrupted
with random noise (for example, the random dark-current
background of a CCD camera), the algorithm may closely
retrieve the FROG trace, but the value of G reported will be
close to the noise level. This case is amenable to quantitative
analysis and was extensively investigated [22]. In both cases,
a visual comparison of the experimental and retrieved traces,
coupled with the knowledge of G, is the best indicator of the
quality of the retrieved field.

As noted above, G provides the only quantitative measure of
the convergence of the FROG algorithm. Therefore, whenever
experimental FROG results are given, the value of G should
always be quoted. In our experience, errors of 0.005 or less
result from accurate retrieval of low-noise data (128 x 128
pixel trace). In SHG FROG, errors of 0.002 are readily
obtainable. A visual comparison of the experimental and
retrieved traces is also enlightening, and should be considered
essential: noise in experimental data will always raise the value
of G, even if the experimental and retrieved traces are exactly
the same shape. We suggest plotting the square root of the
FROG-trace intensities to enhance the low-level features of
the trace.

The size of the FROG-trace grid should also be reported
along with the error. Due to the varying number of pixels in
the trace, we find that the magnitude of the FROG error G
scales like N™1/2 for an N x N trace in the case of noise-
free data. Thus, if an error between two traces generated by
a pair of distinct pulses is equal to 0.01 on a 64 x 64 trace,
it becomes an error of 0.00707 on a 128 x 128 trace. Thus,
care must be taken when comparing errors between traces of
varying sizes.

VIII. CONCLUSION

We have illustrated several experimental details in the
technique of FROG, used for measuring ultrashort laser pulses.
It is essential to investigate these sorts of details in order
for any technique to be useful. We have shown a simple
yet powerful way to check the consistency of the FROG
data with the measured spectrum and/or autocorrelation of
the pulse. This procedure is very effective at uncovering
systematic errors in the data-collection apparatus. We have
addressed the subtle issue of the proper sampling rate for a
laser pulse being measured by FROG and show that a properly
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sampled FROG trace guarantees that the laser-pulse field
is Nyquist-sampled. We have quantified several limitations
to the FROG technique, specifically the maximum signal
efficiency allowed by self- and cross-phase modulation, and
the maximum medium thickness allowed by temporal blurring
of the signal field and broadening due to group-velocity
dispersion. In both cases, we find thar the restrictions are
extremely lax, allowing a maximum diffraction efficiency of
up to 1% and a temporal blurring due to finite medium
thickness of up to one-half of the FWHM of the pulse. We
have also quantified the maximum time-bandwidth product of
a pulse that can be properly represented by a FROG trace. This
value varies from 3 to 20 for a 128 x 128 FROG trace and also
depends strongly on the type of pulse and the particular FROG
geometry under consideration. In all, these results show that
FROG is indeed an extremely useful technique, and we hope
that these results will aid researchers who need to accurately
characterize ultrashort laser pulses.
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