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Frequency-resolved optical gating (FROG), a technique for measuring ultrashort laser pulses, involves produc-
ing a spectrogram of the pulse and then retrieving the pulse intensity and phase with an iterative algorithm.
We study how several types of noise—multiplicative, additive, and quantization—affect pulse retrieval. We
define a convergence criterion and find that the algorithm converges to a reasonable pulse field, even in the
presence of 10% noise. Specifically, with appropriate filtering, 1% rms retrieval error is achieved for 10%
multiplicative noise, 10% additive noise, and as few as 8 bits of resolution. For additive and multiplica-
tive noise the retrieval errors decrease roughly as the square root of the amount of noise. In addition, the
background induced in the wings of the pulse by additive noise is equal to the amount of additive noise on
the trace. Thus the dynamic range of the measured intensity and phase is limited by a noise floor equal
to the amount of additive noise on the trace. We also find that, for best results, a region of zero intensity
should surround the nonzero region of the trace. Consequently, in the presence of additive noise, base-
line subtraction is important. We also find that Fourier low-pass filtering improves pulse retrieval without
introducing significant distortion, especially in high-noise cases. We show that the field errors in the tem-
poral and the spectral domains are equal. Overall, the algorithm performs well because the measured trace
contains N2 data points for a pulse that has only 2N degrees of freedom; FROG has built in redundancy.
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1. INTRODUCTION

Frequency-resolved optical gating (FROG) is a recently
developed technique that uses a phase-retrieval algorithm
to retrieve the intensity I std and the phase fstd from a
measured spectrogram of an ultrashort laser pulse.1 – 3

The spectrogram, or FROG trace, is a time–frequency
representation4 of the pulse that is produced by frequency
resolution of a nonlinear autocorrelation-type signal gen-
erated by two variably delayed replicas of the pulse. Any
nonlinear-optical interaction can be used to make FROG
measurements, and experiments and theoretical stud-
ies have been performed that used polarization gating
(PG),5 – 7 second-harmonic generation (SHG),8,9 and self-
diffraction (SD).1,6 Previous simulations showed that,
for noise-free data, the FROG retrieval algorithm2,3,5,10

retrieves the correct intensity and phase for all pulses
attempted, including those with complex intensity and
phase structure.

In practice, however, noise is present in actual FROG
traces, and several important questions remain to be an-
swered: How well does the FROG retrieval algorithm re-
trieve the pulse in the presence of such noise? Does it
always converge? If so, then what errors can be expected
in the retrieved pulse intensity and phase versus time for
a given noise level in the experiment FROG trace? Fi-
nally, what additional techniques can be incorporated to
improve the retrieval?

It is particularly important to determine whether the
algorithm has converged. In the absence of noise this
is generally a straightforward task: either the error be-
tween the retrieved FROG trace and the measured trace
goes to zero or it does not. Unfortunately, in the presence
0740-3224/95/101955-13$06.00 
of noise this task is not so straightforward. In general,
the algorithm proceeds until it reaches a finite minimum
error. Is the resulting inevitable error in the recovered
pulse intensity and phase simply the error that is due
to measurement error? Or is the error an indication of
a lack of convergence? This distinction is important be-
cause, in the former case, the result is simply the best
estimate of the pulse obtainable from the available data,
whereas in the latter case the resulting pulse may bear
no relation to the actual pulse and hence is meaning-
less. It is thus crucial to define the concept of conver-
gence in the presence of noise, and we do. Using it, we
find that the algorithm essentially always converges, even
for complex pulses and in the presence of massive noise.
Surprisingly, in most cases the algorithm converges to a
more accurate FROG trace than the original trace. In
other words, using only the noisy trace as input, the algo-
rithm retrieves a pulse whose FROG trace better approx-
imates the noise-free trace than the original noisy trace.
Because the algorithm constraints the result only to the
magnitude of the data and to the mathematical form of
the nonlinear interaction, there is no averaging in the
usual sense that forces a result that averages through
the noise. This result is due instead to the oversam-
pling and the redundancy that are naturally built into
the FROG trace: although the pulse has only 2N degrees
of freedom, the FROG trace has N2 degrees of freedom.
Thus the overwhelming majority of mathematically con-
structable two-dimensional images do not correspond to
FROG traces of possible pulses. So the addition of noise
produces a trace that does not correspond to a physically
realizable pulse, and the algorithm must then find a trace
that does and is also reasonably close to the input trace.
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In so doing, it finds a somewhat averaged, generally more
accurate, trace.

Several image-processing techniques can improve the
retrieval. When we consider additive noise (dark cur-
rent), which provides an effective nonzero Poisson dis-
tributed background, we find that it is necessary to sub-
tract off the mean of such background before running the
algorithm on the trace. Even constant background at
large delay or frequency offsets is a problem. Nonzero
background at times far from the peak of the pulse pro-
duces background on the retrieved intensity. Nonzero
background at frequencies far from the pulse’s central
frequency produces high-frequency spikes when Fourier
transformed and leads to high-frequency noise in the re-
trieved intensity and phase. Constant background at
both large delay and frequency offsets therefore yields
background with high-frequency noise in the retrieved in-
tensity (and phase). Spurious background, whether con-
stant or noisy, is thus extremely undesirable. In other
words, the region of nonzero values in the FROG trace
must form an island in a sea of zero values. We note
that background problems are different from the prob-
lem of cropping the FROG trace in either the delay or
the frequency direction; if the trace continues off the grid,
information about the trace is missing. We assume in
this study that the trace is not cropped in this manner.
We use a variety of methods to ensure that any spuri-
ous background in the periphery of the trace is removed.
Corner suppression, or multiplying the trace by a func-
tion to preferentially reduce the values at the edges of
the trace, is also useful for suppressing the background.
Another method for removing noise is simple Fourier low-
pass filtering of the trace, which removes high-frequency
noise without significantly affecting the pulse-intensity
and -phase information present in the trace. We use an
extended example involving a complex pulse with inten-
sity substructure and a phase jump (chosen to be a serious
challenge to the algorithm even in the absence of noise)
and show how its retrieval is affected by the above filters
and the various types and quantities of noise. We also
calculate the mean intensity and phase errors induced by
the filters themselves. We find that such filtering, al-
though it is not essential for achieving convergence, is
extremely helpful for noisy traces and improves the re-
trieval significantly in high-noise situations, and we give
a guide as to how and when to use such filtering. Note
that, although we concentrate on the intensity and the
phase versus time throughout the paper, we find that we
can retrieve the spectral intensity and phase with equal
accuracy. That this must be the case can be shown by a
simple Parseval’s theorem argument.

Convergence of the algorithm does not necessarily
mean, however, that the intensity and the phase of the re-
trieved pulse will be less noisy than the trace from which
they have been retrieved. This is an entirely different
question, one that we study in detail. To do so, we nu-
merically simulate several types of noise for the two most
commonly used FROG geometries, PG FROG and SHG
FROG. We consider additive and multiplicative noise
at each pixel to simulate dark current and pixel-to-pixel
gain variation, respectively. We also model the effects
of quantization error on the FROG retrieval algorithm’s
performance and hence determine the price to be paid in
accuracy by using, say, an 8-bit camera. We find that,
for multiplicative noise, 10% noise in the trace results in
1% rms error in the retrieved pulse intensity and phase.
(It should be kept in mind that 10% multiplicative noise
corresponds to 10% noise near the peak of the pulse but to
0% in the wings of the pulse—a rms error of ,1% for the
traces used in this study.) Additive noise, on the other
hand, is a more severe problem because it distorts the
zero as well as the nonzero region of the trace. However,
using the aforementioned simple filtering techniques to
remove such noise, we find that 10% additive noise also
yields 1% rms error in the retrieved pulse intensity and
phase. (Unlike 10% multiplicative noise, 10% additive
noise is 10% noise everywhere in the trace; this excel-
lent value of noise in the resulting intensity and phase
is partly due to noise reduction as the result of filtering
and partly due to the redundancy in the FROG trace).
Finally, we find that an 8-bit video camera records FROG
traces accurately enough to yield 1% rms errors in the
retrieved intensity and phase. No filters were used in
this last study.

This paper has the following structure. In Section 2
we discuss the basics of FROG and describe our current
phase-retrieval algorithm. We should point out here that
the algorithm essentially consists of a simple generalized-
projections approach10; the additional methods published
previously are almost inconsequential in comparison.2,3

Then, in Section 3, we describe the types of noise that
we use and our methods for simulating the noise. In
Section 4 we describe the trace preparation and image
processing (Fourier low-pass filtering) that we use to im-
prove retrieval and demonstrate the effects on the test
pulse and its FROG trace. In Section 5 we define the in-
tensity and the phase errors used to measure the quality
of the retrieved pulses. In Section 6 we discuss the ef-
fects of additive and multiplicative noise on the retrieved
intensity and phase and describe optimized filtering of
the FROG trace. Then, in Section 7, we define a conver-
gence criterion and describe the convergence properties
of the algorithm. In Section 8 we discuss quantization
noise and give examples showing the ability of the al-
gorithm to retrieve the pulse accurately from 8-bit data.
We then summarize our conclusions in Section 9.

2. FROG BASICS
Consider a laser pulse with a complex electric field
E(t) described by Estd  Astdexpfifstdg, where A(t) is
an amplitude and fstd is a phase. Making a FROG
measurement1 – 3 of this pulse involves splitting the pulse
into two replicas and crossing the replicas in a nonlinear
medium to produce a signal field Esigst, td. Here t is time
and t is the time delay between the arrival times of the
two replicas at the medium. Measuring the spectrum of
the signal field as a function of t gives the FROG trace:

IFROGsv, td ~

É `Z
2`

Esigst, tdexpsivtddt

É 2

. (1)

The FROG trace is a spectrogram of the pulse and con-
tains essentially all information about Estd.2,4,11 – 13 The
time response of the nonlinear medium must be rapid
compared with the pulse length, and we consider the
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response to be quasi-instantaneous. Although FROG
measurements can use any quasi-instantaneous nonlin-
ear effect, the PG1,5,6,14,15 and the SHG6,8,9 geometries
are the most heavily researched geometries to date. PG
FROG relies on the electronic Kerr effect to rotate the
polarization of a probe pulse passing between crossed
polarizers and produces a signal field of the form

Esigst, td ~ EstdjEst 2 tdj2 . (2)

SHG FROG relies on SHG and produces a signal field of
the form

Esigst, td ~ EstdEst 2 td . (3)

Although much intuitive information is immediately
visible in the FROG trace, we use a phase-retrieval al-
gorithm to extract the intensity and the phase from the
FROG trace. One can see that a phase-retrieval algo-
rithm retrieves the intensity and the phase from a FROG
trace by rewriting relation (1) in terms of Esigst, Vd,
the Fourier transform of Esigst, td with respect to t.
Relation (1) then becomes precisely the two-dimensional
phase-retrieval problem, a solved problem from image
science that is well known to have an essentially unique
solution.16 – 19 We use an iterative Fourier-transform
algorithm17,19 – 22 as is commonly done in image science
problems, which in this case yields the intensity and the
phase of the pulse.2,3,10 The algorithm transforms the
signal field Esigst, td back and forth between the t and
the v domains. In the time domain the algorithm con-
strains the signal field to the mathematical form of, for
example, relation (2) or (3). In the frequency domain
the algorithm constrains the squared magnitude of the
Fourier-transformed signal field Esigsv, td to the FROG
trace intensity, as given by relation (1).

Our current algorithm3,10 is significantly more ro-
bust than the algorithm described in our original
study.2 It now incorporates the method of generalized
projections,10,16 a powerful technique used for phase-
retrieval problems in image science. Our original al-
gorithm used a generalized projection for implementation
of the constraint in the frequency domain but not for
the constraint in the time domain and hence tended to
stagnate for complex pulses. Interestingly, when it does
converge, our original algorithm converges quickly, even
though it is less robust than the algorithm based on gen-
eralized projections. We therefore include both methods
in the computer program. We also use several other
methods,2,3 including a full least-squares minimization
in which we treat all values of the field as minimization
parameters. However, in essentially all cases the gen-
eralized projections algorithm with noise as the initial
guess is the only algorithmic technique necessary.

The goal of the algorithm is to find the best solution,
which is defined as the pulse with the minimum FROG
error,

eFROG 

(
1

N2

NX
i1

NX
j1

fĨ FROGsvi, tj d 2 I FROG
n svi, tj dg2

) 1/2

,

(4)

Here Ĩ FROG is the retrieved FROG trace (the FROG trace
calculated from the retrieved intensity and phase) and
I FROG
n is the experimental FROG trace including any

noise. The summations are over the N frequency and
N delay points in the FROG traces. The FROG error
indicates the degree to which the retrieved FROG trace re-
produces the experimental FROG trace. The use of this
error definition is necessary because no other error is
available in practice. It is also reasonable because the
FROG trace essentially uniquely determines the pulse,
and similar traces yield similar pulses. Thus the least-
squares distance from the FROG trace is a good (the best
available) measure of the distance of the retrieved pulse
from the actual pulse. The computer program changes to
a different technique when the error has decreased by less
than 0.5% of the value 10–15 iterations before. To be
certain that the error is the minimum obtainable, the pro-
gram cycles through the different techniques twice, even
though the program typically produces the minimum er-
ror on the first cycle at the generalized projection step.
When the algorithm stops, the program outputs the pulse
with the smallest FROG error as the best estimate of the
pulse that generated the FROG trace.

3. SIMULATION OF NOISE IN
FROG TRACES
We used five test pulses in this study, and they are shown
in Fig. 1. These pulses are representative of many
experimental pulses. The pulses are shown in order of
increasing complexity from Pulse 1, a transform-limited
Gaussian, in Fig. 1(a) to Pulse 5, a double pulse with
phase distortions that include linear chirp, spectral cubic
phase, and self-phase modulation, in Fig. 1(e). As an
example of a FROG trace, Fig. 2 shows the PG FROG
trace of the pulse shown in Fig. 1(e).

Inasmuch as the FROG trace is the measured quantity,
we let all noise occur on the FROG trace, which for this
research is a 64 3 64 array of data values representing
the response of camera pixels. We consider three types
of noise that are representative of experimental noise:
multiplicative noise, additive noise, and quantization er-
ror. Multiplicative noise describes pixel-to-pixel signal
variations that are proportional to the intensity at the
pixel. Gain variation at each pixel of the CCD camera is
a common example of multiplicative noise for a single-shot
experiment. We simulate multiplicative noise at each
pixel by defining the value of the noisy FROG trace at
frequency vi and time delay tj as

IFROG
n svi, tj d  IFROGsvi, tj ds1 1 mij ad . (5)

Here mij is a pseudorandom number drawn from a zero-
mean unit-variance Gaussian distribution and a is the
noise fraction. The noise fraction is a convenient mea-
sure of the amount of noise, and we use it as such through-
out this paper. We normalize the maximum value of the
noiseless FROG trace to 1. It should be remembered,
however, that the rms noise in the trace contaminated by
multiplicative noise is considerably less than a, generally
,ay10 for traces in this paper.

Additive noise describes pixel-to-pixel signal variations
independent of the FROG intensity at the pixels. A com-
mon example of additive noise is thermal noise that occurs
in the CCD cameras typically used for single-shot FROG
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Fig. 1. Intensities and phases of the five pulses used in this
study: (a) Pulse 1, a flat-phase Gaussian, (b) Pulse 2, a linearly
chirped Gaussian, (c) Pulse 3, a self-phase-modulated Gauss-
ian, (d) Pulse 4, a double pulse with spectral cubic phase, and
(e) Pulse 5, a double pulse with linear chirp, self-phase modula-
tion, and spectral cubic phase.
measurements. We simulate additive noise at each pixel
by defining

I FROG
n svi, tj d  IFROGsvi, tj d 1 hij saynd . (6)

Here hij is a pseudorandom number drawn from a Pois-
son distribution of mean n. We use a Poisson distribu-
tion for additive noise because this distribution probably
best describes thermal noise. We have also performed a
few example simulations for a uniform noise distribution
and a half-Gaussian noise distribution. These distribu-
tions gave results similar to those for the Poisson distribu-
tion, indicating that our choice of a Poisson distribution is
sufficiently general. For additive noise, unlike for multi-
plicative noise, the rms noise in a trace contaminated by
such noise is approximately a.

In this study we ignore large-scale systematic errors,
such as a wash of stray light across a camera image.
Large-scale systematic error is inherently a problem for
the algorithm (as it necessarily is in any scientific mea-
surement technique) because it represents a deviation
from a physically realizable FROG trace. Our observa-
tions and simulations show that such noise rapidly de-
grades the performance of the algorithm, and removal
of any large-scale systematic error is necessary to en-
sure accurate retrieval, as it must be in any method.
Many types of such noise can be removed easily. For
example, one can subtract off stray light from the probe
pulse, biases in dark current, and incoherent polarizer
leakage (in PG FROG) by blocking the gate pulse and
recording the background levels, provided that these lev-
els are repeatable from shot to shot. Incoherent polar-
izer leakage yields a delay-independent pulse-spectrum-
shaped baseline across the trace. One can remove it by
sampling the few columns of data at the maximum and
minimum delays, averaging these values, and subtract-
ing the computed spectrum from the trace for all values of
the delay. Coherent polarizer leakage yields fringes that
cannot be simply subtracted. Thus, for PG FROG, using
polarizers with high extinction ratios s$ 105d is desirable.

4. TRACE PREPARATION: BACKGROUND
SUBTRACTION AND IMAGE PROCESSING
We find that some preprocessing of the experimental trace
is quite helpful, and in this section we describe back-
ground subtraction, multiplication of the trace by a func-
tion that is unity near the center of the trace but that falls
to zero at the edges, typically a super-Gaussian (what we
call corner suppression), and Fourier low-pass filtering.
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We have found that it is important that any trace used
as input to the FROG algorithm have regions of zero sig-
nal intensity around the perimeter. Significant nonzero
background at large delay or frequency offset tends to
cause algorithm stagnation. There are probably several
reasons for this. First, even if such background were
physically valid, its failing to fall to zero would indi-
cate a truncation of the trace. Without the full pulse
data the algorithm cannot be expected to reproduce the
correct pulse accurately. Also, in image science prob-
lems, phase-retrieval algorithms are well known to oper-
ate best under conditions of finite support, that is, finite
extent of the image. When it is not valid, background
at large time delays in the FROG trace leads to incorrect
nonzero background intensity, and background at large
frequency offsets in the FROG trace leads to incorrect
high-frequency noise fluctuations in the recovered inten-
sity and phase. Thus a constant background everywhere
in a FROG trace leads to noisy background everywhere in
the retrieved pulse. Unfortunately, noise in the perime-
ter acts as background. As a result, the methods that we

Fig. 2. Polarization-gate FROG trace of Pulse 5 [shown in
Fig. 1(e)].

Fig. 3. PG FROG trace of Pulse 5 after inclusion of 10% additive
noise. The noise is Poisson distributed, with n  5. No image
processing has been used on the trace. The noise at large time
delays leads to nonzero background intensity, and the noise at
large frequency offsets leads to high-frequency fluctuations in
the recovered intensity and phase.
Fig. 4. Retrieved pulse for the FROG trace of Fig. 3 without
mean subtraction. The retrieved intensity exhibits a large back-
ground intensity, and the secondary peak is unresolved. Both
the retrieved intensity and phase exhibit high-frequency fluctu-
ations. (a) The actual and the retrieved intensities. The rms
intensity error defined in Eq. (8) is 15%. (b) The actual and
the retrieved phases. The rms phase error defined in Eq. (9) is
0.65 rad.

describe in this section are aimed mainly at suppressing
noise in the perimeter of the trace, although one method
(Fourier low-pass filtering) also addresses the problem of
noise in the central region of the trace.

For the purposes of presentation we consider the test
pulse of Fig. 1(e), whose trace is shown in Fig. 2, and show
how these methods improve pulse retrieval. Figure 3
shows the FROG trace from Fig. 2 with additive Poisson-
distributed noise included. The noise fraction shown
here is quite large: 0.1 (i.e., 10% of peak FROG signal).
The mean of the Poisson distribution, n, was chosen to
be 5 counts, and the peak of the trace corresponds to 50
counts. The noise does not have a zero mean, and this in-
troduces an effective background offset with a magnitude
approximately equal to the mean of the noise. Compari-
son of Figs. 2 and 3 indicates that the structure in the
surrounding regions of the trace in Fig. 2 is now buried in
the noise in Fig. 3, and even some of the main components
of the trace are difficult to resolve, which raises serious
doubts that the algorithm can reasonably be expected to
reproduce the pulse. This is a particularly challenging
case, which we chose specifically for this reason.

We expect that traces such as that in Fig. 3 will yield
less than satisfying results if the algorithm operates on
the trace as is. As an illustration of the expected results
of such a trace, see Fig. 4, which shows the actual in-
tensity and phase and the retrieved phase to which the
algorithm has converged for this trace. Note that, sur-
prisingly, the algorithm does roughly retrieve the ma-
jor features of the intensity and the phase. The pulse
length is about right, and the general shape of the phase
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Fig. 5. PG FROG trace of the test pulse with 10% additive
noise in the trace after subtraction of the mean of the noise.
Subtracting the mean of the noise lowers the unphysical values
at large time delays and frequencies, which is crucial for accurate
pulse retrieval.

is correct. Quite surprisingly, the retrieved phase con-
tains the phase jump near t  5, but there is sufficient
noise elsewhere in the phase that it is difficult to be con-
fident in the jump. Worse, the secondary intensity peak
cannot be resolved, and there is a large background inten-
sity with high-frequency fluctuations, as expected because
of the large background in the trace.

We obtain significantly better algorithm performance in
all cases, and especially in this one, simply by subtract-
ing the background off. In particular, before running the
pulse-retrieval algorithm we can process the trace by sub-
tracting off the mean of the noise. Any negative points
that result from the subtraction are set to zero. We es-
timate the mean by averaging the data in the 8 3 8 pixel
squares in the corners of the FROG trace. In practice,
other methods might be preferred.23

Figure 5 shows the resulting FROG trace after this
simple procedure for our example trace. Figure 6 shows
the retrieved intensity and phase for the FROG trace of
Fig. 5. Note that the algorithm now resolves the sec-
ondary intensity peak, and the amplitude of the high-
frequency fluctuating background has been reduced by
nearly an order of magnitude. The phase jump near
t  5 is still accurately retrieved, and the remainder of the
phase behavior is much more accurately obtained, which
yields more confidence in the phase jump. Significant
phase deviations remain only at very low intensity val-
ues. The improvement is significant and quite impres-
sive, given the amount of noise present in the original
trace. Nevertheless, even after mean subtraction the tail
of the Poisson distribution of the noise causes pixels at
the edges of the trace to have nonnegligible values. This
leads to the residual noise in the wings of the pulse seen
in Fig. 6.

As a result, because the FROG trace is essentially a
two-dimensional image, we also considered several image-
processing techniques to improve the retrieval, some
of which did not help. We tried—and rejected—out-
range pixel smoothing and median filtering.24 These
methods involve replacing the actual pixel values with
the average or median value of the surrounding pixels.
This had the effect of broadening the traces in both the
time and the frequency dimensions, thus unphysically
increasing the apparent pulse time–bandwidth products.
As these methods did not introduce additional features,
such as chirp and structure, which would be required for
the increased time–bandwidth products, the traces no
longer resembled those of physically valid pulses. This
proved to confuse the algorithm sufficiently that we never
obtained a clear improvement in the retrieved intensities
and phases.

For additive noise we found that retrieval could be im-
proved by what we call corner suppression, that is, sim-
ply multiplying the FROG trace by a radially symmetric
super-Gaussian of the form

Gsvi, tj d  exph2bfsvi 2 Ny2d2 1 stj 2 Ny2d2g2yd4j .

(7)

Here d is the full width at half-maximum of the super-
Gaussian and b  16 lns2d. Figure 7 shows the FROG
trace of Fig. 3 after mean subtraction and corner sup-
pression with d  45. The corner suppression reduces
the values and also the noise at the edges, and especially
at the corners, of the trace without significantly distort-
ing the nonzero regions of the trace. Corner suppression
is reasonable because the trace ought to be zero in these
regions in the first place.

Figure 8 shows the retrieved intensity and phase from
the trace in Fig. 7. Note the significant improvement
in this retrieval over that in Figs. 4 and 6, especially in
the wings of the intensity. After mean subtraction and
corner suppression, the algorithm is able to extract the
pulse intensity and phase remarkably well, considering
the initial noise.

Fig. 6. Retrieved pulse for the FROG trace of Fig. 5. Sub-
tracting the mean greatly reduces the background intensity and
high-frequency fluctuations. (a) The actual and the retrieved
intensities. (b) The actual and the retrieved phases.
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Fig. 7. PG FROG trace of the test pulse with 10% additive noise
after subtraction of the mean of the noise and corner suppression
with d  45 pixels. Super-Gaussian corner suppression forces
the values at the perimeter, and especially at the corners, to zero.

Fig. 8. Retrieved pulse for the FROG trace of Fig. 7. Note that
the use of corner suppression lowers the background intensity in
the retrieved pulse. Also, the reduction in the high-frequency
noise allows the algorithm to resolve the two peaks of the pulse
cleanly. (a) The actual and the retrieved intensities. (b) The
actual and the retrieved phases.

It should be remembered that corner suppression, al-
though it is extremely useful for high-noise cases, can
distort the trace somewhat, and the errors produced by
the filter limit the accuracy of the retrieval. Thus cor-
ner suppression is quite useful for noisy traces when some
pulse distortion can be tolerated, but it is of less util-
ity for clean traces. It is also more useful for traces
with additive noise than for those with multiplicative
noise, in which latter case corner suppression is generally
unnecessary.
Of all the image-processing techniques that we have
considered, Fourier low-pass filtering of the FROG trace
has proved to be the most useful. We implement the low-
pass filter by two-dimensional Fourier transforming the
FROG trace, multiplying the transformed trace by a top-
hat function of radius, in pixels, rNy2 (setting all values
outside rNy2 equal to zero), and transforming the result
back from the transform space to the image space. Note
that when r  1 the top-hat function has a diameter of
N pixels and excludes only the corners of the transformed
trace. The effect of low-pass filtering on the FROG trace
is to remove the higher spatial frequencies and smooth
through the noise but without significantly broadening
the trace. r  1 corresponds to suppression of one half
of the fluctuations between adjacent points. Values of r

less than 1 yield suppression of lower-spatial-frequency
noise in the trace. One should be careful, when using
values of r less than 1, not to filter out real spatial
frequencies in the trace corresponding to actual pulse
fluctuations. Because the noise that we are simulating
(and that usually occurs) is generally at higher spatial
frequencies than are contained in the FROG trace, it is
generally possible to improve the retrieval by low-pass
filtering with an appropriate choice of r.

Figure 9 shows the smoothing that occurs on the FROG
trace of Fig. 7 when a low-pass filter with r  0.5 (in ad-
dition to background subtraction and corner suppression
with d  45) is used. Figure 10 shows the improvement
in the retrieval provided by the filtering. In particular,
the retrieval of the phase is very good, except for slight
ringing induced by the low-pass filter at the sharp phase
change near t  5. Also, the noise-induced prepulses
evident in Fig. 8(a) are reduced. Note that the retrieved
pulse phase disagrees significantly with the actual phase
only in regions of very low intensity, where the phase is
not well defined.

The choice of how tightly to low-pass filter, that is, the
choice of the value of filter radius r, depends on the quan-
tity of noise and the type of noise present. Like all other
filtering operations, low-pass filtering distorts the trace
and introduces errors of its own. We find that low-pass

Fig. 9. PG FROG trace of the test pulse with 10% additive noise
after subtraction of the mean of the noise, corner suppression
with d  45 pixels, and low-pass filtering with r  0.5. The
low-pass filtering removes the high-spatial-frequency noise from
the entire trace. The resulting smoothing effect is apparent.
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Fig. 10. Retrieved pulse for the FROG trace of Fig. 9. The
retrieved intensity is very good, clearly reproducing the peaks
of the pulse with minimal background or high-frequency noise.
The phase is also remarkably good for such an initially high
amount of noise and does not strongly deviate from the actual
phase, except, as expected, at times when the intensity is below
1% of the peak intensity. (a) The actual and the retrieved
intensities. The rms intensity error is 4%. (b) The actual and
the retrieved phases. The rms phase error is 0.14%.

filtering, while critical for traces with large amounts of
noise, is not so useful for low levels of noise, which yield
much better results anyway. To give an idea of the mag-
nitude of the distortion involved, we have applied low-
pass filtering to a noise-free trace. Figure 11 shows a
plot of the mean intensity and phase errors (as defined
in Section 5) as a function of filter radius induced by low-
pass filtering noise-free PG FROG traces of the five test
pulses. Note that, as expected, as the radius of the filter
decreases, the errors introduced by the low-pass filter in-
crease. When minimal noise is present in the trace, dis-
tortions induced by the low-pass filter are quite noticeable
and hence undesirable. On the other hand, when large
amounts of noise are present in the trace the error intro-
duced by filtering may be negligible compared with the
noise reduction obtained by its use. Thus the decision
to use the low-pass filter will in practice depend on the
type and the amount of noise. The filter is essential in
high-noise cases but detrimental in low-noise cases, and
it should be used accordingly.

A similar noise-suppression distortion trade-off exists
for corner suppression. Figure 12 shows a plot of the
mean intensity and phase errors induced as a function of
the corner-suppression filter diameter. Just as for low-
pass filtering, as the radius of the filter decreases, the
errors introduced increase. In this case, however, the
errors are nearly constant and moderate in magnitude,
even for relatively large diameters such as d  60.

In view of these results we will define the concept of
optimized filtering, which will involve heavy filtering in
high-noise cases and weaker filtering in low-noise cases,
where it is less necessary and our standards for pulse
distortion are higher. We will discuss the specific details
of optimized filtering in Section 6 as we discuss the effects
of noise on the retrieval of the intensity and phase.

Before going to Section 5 we note that additional,
more-sophisticated image-processing techniques, such
as Wiener filtering24 and, in particular, wavelet noise
reduction,25 may also prove to be useful for removing
noise from FROG traces.

5. INTENSITY AND PHASE ERRORS
The performance of the algorithm can be quantitatively
measured in two ways: how well it retrieves the original
intensity and phase and how well it retrieves the origi-
nal FROG trace. In experiments in which the original
intensity and phase are unknown, only the latter error is
available. As a result, it plays a central role in the al-
gorithm, as discussed above. In this section we will also
define intensity and phase errors to give us an idea of how
well the algorithm retrieves the pulse itself, rather than
only its FROG trace, in simulations. All these measures
are related because of the one-to-one correspondence of

Fig. 11. Mean rms intensity and phase errors for PG FROG
induced by low-pass filtering the FROG trace for the five test
pulses. The data are plotted as a function of filter radius. The
filter radius r in the transform space is given as a fraction of Ny2,
where N is the number of pixels in each of the two dimensions of
the FROG trace. Error bars indicating one standard deviation
from the mean error for the intensity and the phase are shown
at filter radii of 0.4 and 0.3, respectively.

Fig. 12. Mean rms intensity and phase errors for PG FROG
induced by the use of corner suppression on the FROG trace
for the five test pulses. The data are plotted as a function
of filter radius. The filter is centered in the center of the
FROG trace and has a diameter given in pixels in each of the
two dimensions of the FROG trace. Error bars indicating one
standard deviation from the mean error for the intensity and the
phase are shown at filter diameters of 40 and 60, respectively.
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pulses to possible FROG traces, but it is not a priori ob-
vious that rms intensity and phase errors correspond to
a given rms FROG trace error. We find that the former
errors are of the order of the latter error.

To measure how closely the algorithm retrieves the
original intensity we use the rms intensity error in the
obvious manner:

eI 

(
1
N

NX
j1

fĨ stj d 2 I stj dg2

) 1/2

, (8)

where I and Ĩ are the actual and the retrieved intensities,
respectively. Here the peak of I std is normalized to 1, so
we often quote this error as a percentage. The summa-
tion is over the N discrete time points.

The choice of error to use as a monitor of the algo-
rithm’s ability to retrieve the phase is not so obvious.
An unweighted rms phase error is inappropriate because
the phase of the pulse is meaningless when the inten-
sity is near zero. The retrieved phase can thus exhibit
large—but meaningless—phase variations for low in-
tensities that skew the rms phase error. Therefore we
would not want to include such phase points in our error
calculation. A more appropriate choice of the error to
use to monitor the retrieval of the phase is the intensity-
weighted rms phase error:
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Here f and f̃ are the actual and the retrieved phases,
respectively. Note that ef has units of radians.

When calculating both of these errors we minimize the
errors with respect to the peak intensity, a temporal shift,
and the absolute phase to account for the fact that the
FROG trace is invariant to overall shifts in time and
phase in the pulse and that the algorithm yields a pulse
of no particular peak intensity. As an example of the
relative magnitude of the errors, the intensity and the
phase errors obtained for Figs. 4(a) and 4(b) were 15%
and 0.65 rad, respectively, whereas the intensity and the
phase errors obtained for Figs. 10(a) and 10(b) were only
4% and 0.14 rad, respectively.

We could also define and calculate the errors in the
spectra intensity and phase rather than the temporal
quantities. A simple argument, however, shows that the
spectral errors contain no additional information. Con-
sider the error in the field as a function of time, et, defined
by

et
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,

NX
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jEstj dj2. (10)

Here Ẽstd is the reconstructed field at time t, and the
summation is over N discrete times. The error in the
field as a function of frequency may be similarly defined
by

ev
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Here Esvd and Ẽsvd are the actual and the reconstructed
fields, respectively, as a function of frequency v, and
the summation is over the N discrete frequencies. By
Parseval’s theorem, et

2  ev
2. Thus, as the error in the
field versus time equals the error in the field versus fre-
quency, the errors in the spectral intensity and phase are
similar to those in the temporal intensity and phase.

6. EFFECTS OF ADDITIVE AND
MULTIPLICATIVE NOISE ON RETRIEVAL
We now consider the behavior of the intensity and the
phase errors in the presence of additive and multiplicative
noise. We use the same noise (i.e., set of hij ) in all cases;
only its magnitude a changes. If we use other sets of hij

we obtain results similar to those presented here. For
additive noise Fig. 13 shows the mean PG and SHG FROG
retrieval errors for the five pulses versus noise fraction, a.
The mean of the noise background was subtracted from
the FROG traces before retrieval, but no other filtering
was performed. In general, filtering is strongly advised;
this initial study without filtering is mainly for the sake
of illustration. The error bars indicate one standard de-
viation from the mean for the five pulses. The errors for
PG and SHG FROG are comparable and decrease roughly
as the square root of the noise fraction. For 0.1% ad-
ditive noise sa  1023d the algorithm achieves intensity
and phase errors of the order of 1% and 0.01 rad, respec-
tively. For 10% additive noise the algorithm achieves in-
tensity and phase errors of the order of 10% and 0.1 rad,
respectively.

It is interesting to consider where in the pulse the
noise resides. We find that it occurs mainly where the
intensity is highest and is much lower in the wings of
the pulse. Figure 14 shows, plotted on a log scale, the
actual intensity for Pulse 1 and the retrieved intensities
for additive noise with a  0.001 and a  0.0001 for PG
FROG without filtering. The rms intensity errors for
these noise levels are 0.0071 and 0.00145, respectively,
but the background levels or noise floors of the retrieved
intensities are much lower: roughly equal to the amount
of noise. This result holds for all the pulses and the noise
levels and shows that FROG measurements can be made
with a dynamic range limited only by (and equal to) the

Fig. 13. Mean rms intensity and phase errors for PG and SHG
FROG for additive noise with n  5. The mean of the noise
background was subtracted from the FROG traces before re-
trieval, but no other filtering has been performed. The data
are plotted as a function of noise fraction. The errors decrease
roughly as the square root of the noise. An error bar indicating
one standard deviation from the mean phase error for PG FROG
is shown at a noise fraction of 1022. The standard deviation for
the PG intensity at a noise fraction of 1023 is contained within
the circular marker. These high noise levels in the retrieved
intensity and phase reveal the importance of filtering (see Fig. 15
below).
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Fig. 14. Actual and retrieved intensities of Pulse 1 for additive
noise with a  0.001 and a  0.0001 for PG FROG. The noise
floor in the wings of the retrieved intensities is roughly equal to,
and decreases linearly with, the amount of additive noise, a.

level of noise. FROG thus effectively finds weak satellite
pulses, but it is less adept at revealing slight distortions
in the high-intensity regions of the pulse.

Significantly better results can be obtained by use of
what we call optimized filtering, which involves selective
corner suppression and low-pass filtering, mostly in cases
when noise is large and some pulse distortion can be tol-
erated as the price to be paid for noise reduction. Specif-
ically, in view of the results of Figs. 11 and 12, we define
optimized filtering for additive noise to include low-pass
filtering and corner suppression with filter radii chosen
such that the mean induced errors that are due to the
filters themselves are at the level of error desired. The
optimized filter thus uses smaller filter radii in high-noise
cases, where some distortion can be tolerated, and larger
radii in low-noise cases, where such distortions will be
noticed. In this study we chose the desired errors to be
an order of magnitude lower than the mean errors ob-
tained without filtering that are shown in Fig. 13. Thus
the optimized corner-suppression radii are d  60, 41, and
35 for additive noise with a  1023, 1022, and 1021, re-
spectively. For a  1024, corner suppression is not used.
The optimized low-pass filter radii for additive noise are
r  0.58, 0.58, 0.4, and 0.3 for a  1024, 1023, 1022, and
1021, respectively.

Figure 15 shows the results of optimized filtering of the
additive-noise-contaminated traces before the algorithm
for PG FROG was run. Note the significant improve-
ment obtained, which is consistent with the extended ex-
ample of Section 4. Now, for 10% additive noise, the rms
intensity and phase errors are only of the order of 1% and
0.01 rad, respectively. The results for SHG FROG are
similar. It is thus clear that filtering should play a sig-
nificant role in the pulse-retrieval process in FROG in the
presence of additive noise. As for the unfiltered case, the
noise resides mainly where the intensity is highest and is
lower in the wings of the pulse. The noise floors of the
retrieved intensity for filtered traces are roughly equal
to the noise that remains in the wings of the trace after
filtering.

Figure 16 shows the PG and the SHG FROG retrieval
errors versus noise fraction for multiplicative noise.
Multiplicative noise as high as 10% produces errors of
1%, indicating that, of course, the algorithm deals with
multiplicative noise better than it deals with additive
noise. This is not surprising because multiplicative noise
is significant only where the signal intensity is large, so
multiplicative noise leaves the perimeter of the trace
unchanged. In addition, the average error in the trace
for a given value of a is less for multiplicative noise
than for additive noise. We find that, as happens for
additive noise, the errors decrease with decreasing noise
fraction. We used optimized filtering for multiplicative
noise cases but observed no significant improvement in
the reconstructions. The errors without the filters are
much smaller than for additive noise and require such
large filter radii (to prevent inducing even larger errors
with the filters) that the filters prove unnecessary where
only multiplicative noise exists.

7. CONVERGENCE CRITERION
As mentioned above, it is important to define a con-
vergence condition to determine whether error in the
retrieved pulse is simply the noise resulting from the
measurement or instead is an indication of algorithm
stagnation. In the former case the retrieved pulse is
meaningful, whereas in the latter it is not.

For this study, in which we know the actual pulse, we
could simply consider how well the algorithm retrieves
the original pulse intensity and phase. However, it is not

Fig. 15. Intensity and phase errors for PG FROG for additive
noise with n  5 with and without optimized filtering. Filtering
lowers the retrieved errors dramatically. Error bars indicating
one standard deviation from the mean intensity error for the
filtered and the unfiltered cases are shown at noise fractions of
1022 and 1023, respectively.

Fig. 16. Intensity and phase errors for PG and SHG FROG for
multiplicative noise. The traces were not filtered before the
pulse was retrieved. The data are plotted as a function of noise
fraction. Error bars indicating one standard deviation from the
mean phase error for PG and SHG FROG are shown at noise
fractions of 1022 and 1023, respectively.
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clear how to define a quantitive criterion because noise in
the FROG trace has different units from that in the phase,
for example. And noise in the intensity is not relatable to
noise in the FROG trace either, even though they have the
same units, because the two quantities live in different
functional spaces. Instead, we must attack this issue by
asking how well the algorithm retrieves the desired (i.e.,
noise-free) FROG trace, which is directly relatable to the
noise in the noisy FROG trace. This is reasonable in
view of the uniqueness of FROG traces.

Thus we consider the algorithm to have converged to
the original trace if the error between the retrieved FROG
trace and the actual noise-free FROG trace is at most only
slightly larger than the error between the noisy FROG
trace and the actual FROG trace. Formally, we consider
convergence to have occurred when
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is the rms error of FROG trace C with respect to FROG
trace D. If R is less than 2 we consider the retrieved
trace to be a reasonable representation of the original
trace. We use 2, and not 1, because the noisy trace
is in some sense displaced in function space from the
original noise-free trace, and the retrieved trace is then
expected to be displaced somewhat from this trace still.
So a number greater than 1 seems appropriate, and 2
seems reasonable. If, as often happens, R is less than 1,
the retrieved FROG trace is a better representation of the
correct FROG trace than the noisy trace used as input to
the algorithm. The algorithm has in some sense ignored
the noise and found a solution that is better than the in-
put! This apparent ability of the algorithm to separate the
noise from the true FROG trace occurs because the noise
does not satisfy the mathematical constraint imposed by
the nonlinear interaction on the signal field [relation (2)
or (3)] and because the FROG trace has built-in redun-
dancy. The FROG trace has N2 data points, but only 2N
data points are required for a description of the intensity
and the phase.

Figure 17 shows the mean convergence criterion ver-
sus noise fraction for additive and multiplicative noise for
PG FROG and SHG FROG. We used no filters for these
data. In all cases R is significantly less than 2, and we
conclude that the algorithm converges. For the individ-
ual pulses the algorithm gives convergence ratios below 1,
and in some cases the convergence ratios are lower even
than 0.1. As stated above, these convergence ratios in-
dicate that the algorithm smooths through the noise to
produce a representation of the pulse that is more accu-
rate than the original trace with noise. In addition, the
results for optimized filtering are numerically similar and
the algorithm converges.
We should mention that initially we found that, for a
few very low-noise cases sa ø 1024d, the algorithm gave
a value of R slightly above 2. Because the noise was so
low in these cases, the intensity and phase errors for these
cases were typically still of the order of 0.1%. We found
that for such cases the algorithm could get trapped in a
local minimum very close to the global minimum. We
have found that simply altering the noise used for the
initial guess for the intensity and the phase avoids the
local minimum and allows convergence for cases that give
such unexpectedly high FROG errors as the result of a
local minimum. The best initial guesses for the intensity

Fig. 17. Convergence ratio for PG and SHG FROG for additive
and multiplicative noise without filtering. For additive noise
n  5. The solid horizontal line indicates the convergence limit
where R  2. The algorithm converges for all cases. Error
bars indicating one standard deviation from the mean conver-
gence ratio for multiplicative noise for PG and SHG FROG are
shown at noise fractions of 1022 and 1023, respectively. The
upper error bar for PG FROG is contained within the diamond
marker.

Fig. 18. Retrieved test pulse for PG FROG after quantization
to 8 bits. The errors in the retrieved intensity and phase are
small and become apparent mainly at intensities below 1023 of
the peak intensity. (a) The actual and the retrieved intensities.
The rms intensity error is 1.1%. (b) The actual and the retrieved
phases. The phase error is 0.0044 rad.
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Fig. 19. Retrieved test pulse for SHG FROG after quantization
to 8 bits. The errors in the retrieved intensity and phase
are small and become apparent mainly at intensities below
1023 of the peak intensity. (a) The actual and the retrieved
intensities. The rms intensity error is 0.63%. (b) The actual
and the retrieved phases. The phase error is 0.00216 rad.

and phase were noise uniformly distributed from 0 to
1. We used this technique for avoiding local minima in
the above results; it was necessary mainly for the most
complex pulse with the phase jump and only for such very
small amounts of noise. For pulses with less structure or
higher levels of noise, the algorithm always converged for
the first choice of initial-guess noise.

8. QUANTIZATION NOISE
Digitizing a FROG trace, as is inevitable when one is
transferring the data to a digital computer, leads to in-
accuracies in retrieval. The data assume discrete val-
ues and no longer represent the pulse accurately. A
standard camera has 8 bits of resolution, and much more
expensive cameras can have 16 bits of resolution. We fo-
cus here on 8-bit digitization. For PG and SHG FROG,
Figs. 18 and 19 show the retrieved intensity and phase
for Pulse 5 after the FROG traces were reduced to 8
bits of resolution. For PG FROG the intensity and the
phase errors are 1.1% and 0.0044 rad, respectively, and
for SHG FROG the intensity and phase errors are 0.63%
and 0.00216 rad, respectively. In both cases the devia-
tions of the retrieval become apparent only for intensities
near 1023 of the peak intensity. This is not surprising,
because the FROG trace has 256 levels. These traces are
representative of all our quantization results, and thus we
find that a standard 8-bit camera is probably sufficient
for measurements with ,102 dynamic range in the inten-
sity of the FROG signal. Switching to a 14-bit camera
will increase the number of quantization levels to 16384
and will give a dynamic range up to ,104. Making mea-
surements with dynamic ranges of 105 or more will re-
quire separate calibrations of a FROG device for different
intensity regimes. We should mention that no filtering
was used in this analysis, but it seems reasonable that an
optimized filter would yield some improvement (although
not so much as in the additive-noise case).

9. CONCLUSIONS
We numerically simulated up to 10% additive, multi-
plicative, and quantization noise for polarization-gate
and second-harmonic-generation frequency-resolved opti-
cal gating. We find that our phase-retrieval algorithm is
capable of retrieving pulses even with the largest values
of noise that we considered. The errors in the intensity
and the phase for PG and SHG FROG are comparable
and decrease roughly as the square root of the amount of
noise. We find that optimal preparation of the trace for
input into the algorithm includes requiring the nonzero
region of the trace to be surrounded by a region of zeros
and elimination of nonrandom backgrounds. For traces
with additive noise we find also that mean-background
subtraction and optimized application of super-Gaussian
corner suppression and low-pass filters greatly improves
retrieval of the intensity and the phase. Using these
techniques, we obtained intensity and phase errors at
most of order 1% and 0.01 rad, respectively, for 10% ad-
ditive and multiplicative noise. In addition, we showed
that the spectral and the temporal field errors are equal,
so the errors in the spectrum and the spectral phase will
be similar to the errors in the intensity and the phase.
We defined a convergence criterion and showed that in
general the algorithm converges to a solution that is a
better representation of the original than the noisy input
trace. Finally, we showed that, in the presence of quan-
tization noise and when the trace has a finite number of
discrete levels, the dynamic range of the retrieved pulse
is close to that of the FROG trace itself. Therefore an
8-bit camera is sufficient for retrieving pulses with a 102

dynamic range.
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