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Characterization of Arbitrary Femtosecond Pulses
Using Frequency-Resolved Optical Gating

Daniel J. Kane and Rick Trebino

Abstract—We introduce a new technique, which we call fre-
quency-resolved optical gating (FROG), for characterizing and
displaying arbitrary femtosecond pulses. The method is simple,
general, broad-band, and does not require a reference pulse.
Using virtually any instantaneous nonlinear-optical effect,
FROG involves measuring the spectrum of the signal pulse as
a function of the delay between two input pulses. The resulting
trace of intensity versus frequency and delay is related to the
pulse’s spectrogram, a visually intuitive transform containing
both time and frequency information. We prove, using phase
retrieval concepts, that the FROG trace yields the full intensity
I(r) and phase ¢ () of an arbitrary ultrashort pulse with no
physically significant ambiguities. We argue, in analogy with
acoustics problems, that the FROG trace is in many ways as
useful a representation of the pulse as the field itself. FROG
appears to have temporal resolution limited only by the re-
sponse of the nonlinear medium. We demonstrate the method
using self-diffraction via the electronic Kerr effect in BK-7 glass
and few pJ, 620 nm, linearly chirped, ~200 fs pulses.

INTRODUCTION

HE technology of ultrashort pulse measurement has

been under development since the advent of ultrashort
pulse lasers over two decades ago. Early methods yielded
only the intensity autocorrelation of the pulse [1]-[3].
Later developments have achieved the indirect determi-
nation of various phase distortions common to ultrashort
pulses [4]-[6]. Unfortunately, these methods yield only
partial information. Some work has been done to extract
the time-dependent intensity /() and phase ¢ (¢) [or, es-
sentially equivalent to the phase, the instantaneous fre-
quency w(?)], from these traces using iterative algorithms
[71-19]. Fundamental inherent ambiguities, including the
direction of time, however, remain [8]. It is therefore not
possible to determine, for example, the sign of a chirp,
unless a second measurement is made after pulse propa-
gation through a known dispersive medium [7], [10].
Other methods yield only I(¢) [11], [12] or require a streak
camera, [13], [14] and hence lack sufficient temporal res-
olution. Still other methods have been developed to mea-
sure the phase ¢ (r) but are complex, require a reference
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pulse, and/or do not yield the intensity [15]-[20]. In an
important recent development, however, Chilla and Mar-
tinez [21]-[23] have demonstrated a method that directly
obtains the pulse shape and phase in the frequency do-
main. Extending work first performed by Fork et al., [16],
[17] their method involves frequency filtering the pulse
and cross correlating the filtered pulse with the shorter
unfiltered pulse, yielding the group delay versus fre-
quency, which is integrated to yield the phase versus fre-
quency. This result, in conjunction with the spectrum, is
the pulse field in the frequency domain, and Fourier trans-
formation then yields the intensity and phase in the time
domain without significant ambiguity. This method rep-
resents an important development, and it has been suc-
cessfully used to make measurements of ultrashort pulses
[24]. Unfortunately, it is complex and time consuming to
perform and is unlikely to achieve single-shot operation.
It also requires that the pulse group delay be well defined.

In this paper, we propose and demonstrate an experi-
mentally simpler method, which we call frequency-re-
solved optical gating (FROG), which, in principle, also
determines the intensity and phase of a pulse without sig-
nificant ambiguity. Whereas Chilla and Martinez mea-
sured the cross correlation of a particular frequency com-
ponent of an ultrashort pulse, FROG involves measuring
the spectrum of a particular temporal component of the
pulse (see Fig. 1). FROG does this by spectrally resolving
the signal pulse in virtually any autocorrelation-type ex-
periment performed in an instantaneously responding
nonlinear medium. The resulting trace of intensity versus
frequency and delay is related to a well-known quantity,
the spectrogram [25] of the pulse:

Sg(w, 7) = S E()g(t — 7) exp (—iwt) dt 1)

where g(¢ — 7) is a variable-delay gate pulse, and the sub-
script E on S indicates the spectrogram’s dependence on
the pulse field E(r). The gate pulse g(?) is usuvally some-
what shorter in length than the pulse to be measured, but
not infinitely short. This is an important point: an infi-
nitely short gate pulse yields only the intensity /(r) and
conversely, a CW gate yields only the spectrum /(w). On
the other hand, a finite-length gate pulse yields the spec-
trum of all of the finite pulse segments with duration equal
to that of the gate. While the phase information remains
lacking in each of these short-time spectra, this loss is
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Fig. 1. Experimental apparatus for FROG. FROG involves splitting the
pulse and overlapping the two resulting pulses in an instantaneously re-
sponding x'* medium. In this paper, we use self-diffraction due to the elec-
tronic Kerr effect in glass as the nonlinear-optical process. The diffracted
light is then spectrally resolved, and the diffracted intensity measured ver-
sus wavelength and delay 7. The resulting trace of intensity versus delay
and frequency is related to the spectrogram, a time- and frequency-resolved
transform that intuitively displays time-dependent spectral information of
a waveform. Inset: Because most of the diffracted light emanates from the
times 7/3 of one pulse and —27/3 of the other pulse, the diffracted pulse,
when spectrally analyzed, indicates the frequencies of these regions of the
pulse.
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Fig. 2. Spectrograms for negatively chirped, unchirped, and positively
chirped Gaussian pulses. Above each are shown the instantaneous fre-
quency versus delay curves for the pulses. A Gaussian window function of
width approximately 70% of the pulsewidth was used. These traces are also
theoretical self-diffraction FROG traces for negatively chirped, unchirped,
and positively chirped Gaussian pulses. The only difference between the
spectrogram and FROG traces for the pulses shown here is that the appro-
priate vertical scale of the instantaneous frequency plots is larger for the
spectrograms than for the FROG traces. In other words, the self-diffraction
FROG trace amplifies linear chirp somewhat compared to the spectrogram.
See Appendix C for further discussion of this effect. (The use of polar-
ization-spectroscopy optical gating for the nonlinear effect in FROG would
yield a FROG trace equal to the spectrogram.)

compensated by having the spectrum of an infinitely large
set of pulse segments. The spectrogram has been shown
to nearly uniquely determine both the intensity I(r) and
phase ¢(?) of the pulse, even if the gate pulse is longer
than the pulse to be measured [26], [27] (although if the
gate is too long, sensitivity to noise and other practical
problems arise [28]). The spectrogram is commonly used
in acoustics to visually display a sound wave [25]. It is a
natural and intuitive measure, showing the short-time
spectrum of the waveform as a function of time. An ex-
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Fig. 3. Theoretical instantaneous frequency versus time, spectrum, spec-
trogram, and FROG trace for a weakly self-phase-modulated pulse (Q =
1). Note that the spectrogram and FROG trace both visually display the
pulse instantaneous frequency versus time (see Appendix C). (The use of
polarization-spectroscopy optical gating for the nonlinear effect in FROG
would yield a FROG trace equal to the spectrogram.)

ample of the spectrogram in everyday life is a musical
score. Figs. 2 through 4 give examples of theoretical
spectrograms for commonly encountered ultrashort pulses.

In FROG, using self-diffraction as the nonlinear effect,
the signal pulse is given by:

Eg(t, 1) o [EIE*t — 1) @
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Fig. 4. Theoretical instantaneous frequency versus time, spectrum, spec-
trogram, and FROG trace for a strongly self-phase-modulated pulse (Q =
8). Note that the mean frequency versus delay of both the spectrogram and
FROG both trace indicates the pulse instantaneous frequency vs. time (see
Appendix C). The structure in the both traces indicates the breakup of the
spectrum due to self-phase modulation. The additional structure in the
FROG trace is a result of the dependence of the FROG trace on the pulse
phase at two different times 7/3 and —27/3. (The use of polarization-
spectroscopy optical gating for the nonlinear effect in FROG would yield
a FROG trace equal to the spectrogram.)

so the measured signal intensity Iggog(w, 7), after the
spectrometer is:

Y 2
Irrog(w, 7) = S_ [EDVE*(t — 7) exp (—iwt) dt| .

3
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We see that the FROG trace (see Figs. 2 through 4) is
thus a spectrogram of the pulse squared E*(f) although the
gate pulse E*(tr — 7) is a function of the pulse itself. Or,
with a change of variables, we can regard E*(¢) as the
pulse to be measured, and E*(t — 7') as the gate (1’ =
—7). While algorithms previously developed for deter-
mining a waveform from its spectrogram generally re-
quire knowledge of the gate function [26], we will show
that this is not essential.

To see that the FROG trace essentially uniquely deter-
mines E(7) for an arbitrary pulse, it is first necessary to
observe that E(7) is easily obtained from Eg,(¢, 7). This is
shown in Appendix A. Then it is simply necessary to write
(3) in terms of E,(z, Q), the Fourier transform of the sig-
nal field E; (¢, 7) with respect to the delay variable 7. We
then have what appears to be a more complex expression,
but one that will give us better insight into the problem:

Irrog(w, 7) = S_m Eg(t, @)

2
- exp (—iwt — iQ7) dt dQ]| . “)

Equation (4) indicates that the problem of inverting the
FROG trace Irgog(w, 7) to find the desired quantity Eg,(¢,
Q) is that of inverting the squared magnitude of the two-
dimensional (2-D) Fourier transform of Eg,(z, ). This
problem, which is called the 2-D phase-retrieval prob-
lem, is well known in many fields, especially in astron-
omy, where the squared magnitude of the Fourier trans-
form of a 2-D image is often measured [29], [30]. At first
glance, this problem appears unsolvable; after all, much
information is lost when the magnitude is taken. Worse,
it is well known that the 1-D phase retrieval problem is
unsolvable [for example, infinitely many pulse fields give
rise to the same spectrum, |§ E(?) exp (—iwt) dt|*]. In-
tuition fails badly in this case, however; two- and higher-
dimensional phase retrieval essentially always yields
unique results [29]-[34]. Only a set of traces of measure
zero yields nontrivial ambiguities, and their occurrence,
even in the presence of noise, is an event with zero prob-
ability. Otherwise, only trivial, unimportant ambiguities
(such as a constant phase factor) remain in these problems
(see Appendix B). Interestingly, our inability to solve 1-
D phase-retrieval problems follows from the existence of
the Fundamental Theorem of Algebra for polynomials in
one variable. Conversely, our ability to solve two- and
higher-dimensional phase-retrieval problems follows from
the nonexistence of the Fundamental Theorem of Algebra
for polynomials of two or more variables [29]. The phase-
retrieval literature contains additional details regarding
these interesting results, including a wide range of algo-
rithms for finding the solutions to these problems, and the
interested reader is referred to this literature [29], [35]-
[38].

Thus, in principle, the FROG trace uniquely deter-
mines the pulse field E(?) for an arbitrary ultrashort pulse.
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We will provide in a future publication an iterative algo-
rithm for obtaining the precise pulse field, given a FROG
trace (which involves a few variations on currently avail-
able methods). Here, instead, we simply curve-fit the ex-
perimental FROG trace to a reasonably general model.

More importantly, we would like to point out here that
the FROG trace is itself a very convenient representation
of the pulse. In acoustics problems, for example, analo-
gous time- and frequency-resolved traces [28] (the spec-
trogram, Gabor transform, Wigner transform, wavelet
transform, etc.) are usually preferred to the precise mea-
surements of the pressure wave versus time from which
they are calculated [39]. We argue here that the same is
true for ultrashort pulses. For reasonably well-behaved
pulses, the FROG trace graphically displays the instan-
taneous frequency as a function of time, subject to a sim-
ple correction formula (see Appendix C). In addition, the
approximate pulse width is indicated by the extent of the
trace along the delay co-ordinate. And, because the FROG
trace provides both time and frequency information si-
multaneously, a plot using the correct scaling yields ap-
proximately circular contours of constant intensity for a
transform-limited puise.

FROG has additional advantages: it is inexpensive,
simple to implement, and very broadband, appearing very
well suited to the measurement of UV pulses. The self-
diffraction geometry has negligible phase mismatch, and
it is possible to use the polarization-spectroscopy optical-
gate geometry, which is automatically phase matched.
FROG is readily extendable to a single-shot device, in
which the pulse shape and phase may be determined sim-
ply by crossing two cylindrical-lens-focused line-shaped
beams at an angle, allowing the signal light to pass
through a spectrometer, and detecting with a 2-D array
detector. One very important feature of FROG is that
spectral dispersion occurs after, rather than before (as in
the method of Chilla and Martinez), the nonlinear me-
dium, allowing much higher intensity in the nonlinear
medium and a simpler alignment. This also avoids the
need for frequency scanning, which means that the time
required to perform the measurement is proportional to N,
rather than N2, where N is the number of temporal points
desired.

We should point out that the notion of making mea-
surements with both finite time and frequency resolution
is certainly not new in the field of ultrafast spectroscopy.
It is quite common to measure the spectrum versus delay
in excite-probe experiments [40], [41]. Such measure-
ments have been referred to as time-resolved spectral
measurements, as well as ‘‘spectrochronograms’’ [42].
We believe, however, that this paper is the first to use
these concepts to measure an ultrashort pulse.

In order to demonstrate this method experimentally, we
performed a multishot experiment involving amplified fsec
pulses. A Rhodamine-6G colliding-pulse mode-locked
laser produced < 100 fs pulses at a repetition rate of ~ 100
MHz, and a 10 Hz Nd: YAG-pumped four-stage dye am-
plifier amplified these pulses to an energy of ~200 puJ.

Dispersion compensation using four SF-10 prisms could
compress the resulting ~200 fs pulses to ~ 100 fs, but
such compensation was not used in this experiment. A
beam splitter and a neutral-density filter yielded two rep-
licas of the pulse of about 6 uJ each. A high-quality trans-
lation stage, with a resolution of 1 um, produced variable
delay for one pulse train, and a ~1 m focal-length lens
focused and crossed the two beams at an angle of about
0.5°. The electronic Kerr effect in a 3 mm thick BK-7
window placed at the focus of these two beams provided
self-diffraction with ~ 10™* efficiency. The peak intensity
at the BK-7 was approximately 25 GW /cm’® (an inten-
sity for which we verified an approximately cubic de-
pendence of diffracted energy versus input energy). In ad-
dition, we observed negligible spectral broadening or
small-scale self-focusing due to the medium. We calcu-
late that the effects of group-velocity dispersion due to the
optics and sample medium were negligible at ~620 nm.
The diffracted beam was attenuated (ND 1.0) and focused
onto the 50 um slits of a 1 /4 m Jarrel Ash spectrometer.
A liquid-nitrogen-cooled Photometrics charge-coupled-
device (CCD) camera collected the dispersed diffracted
light, averaged over 20 shots. (We should point out that
signal strengths were sufficient that a thermoelectrically
cooled CCD camera would have sufficed and should suf-
fice in most experiments.) The diffracted intensity vs.
wavelength was then recorded with a Maclntosh IIci mi-
crocomputer.

Diffracted-pulse spectra were obtained for eleven dif-
ferent delays at 67 fs intervals using the unrecompressed,
positively chirped ~200 fs pulses. These spectra easily
revealed a large wavelength chirp over the range of delays
used. Fig. 5 shows a density plot of the measured dif-
fracted pulse energy versus wavelength and delay. Be-
cause a fast Fourier transform routine is necessarily in-
volved in the analysis of the data, it is important that the
delay increment 87 and frequency increment é» be related
by the appropriate relation é» = 1/(Né7), where N is the
number of delays or frequencies. It was thus necessary to
massage the data somewhat. Specifically, spectral data
were eliminated, and delay data had to be interpolated. In
this manner, an 11 X 516 array was transformed to a 33
X 33 array.

We curve-fit the data to a model that allows for double-
pulsing and, to some extent, asymmetrical pulses:

E(t) = A(@0) exp lie )] )
where
A = exp {—alt/7ed’} + bexp {—clt/Ter — dI’}
(6)
and

o(t) = at/Teg) + BU/ T + ¥t/ Ted)’
+ 8t T + €t/ T’ )

Using the value 7,y = 76 fs, we obtained a fit with a =
0.133,b=041,c=1.60,d = —1.18, a = —0.058, 8
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Fig. 5. Experimentally obtained self-diffraction-FROG trace for a ~200

fs pulse immediately after amplication. This trace indicates approximately
linear positive chirp, as expected.

= —0.271, v = —0.00044, 6 = —0.0007, and ¢ =
—0.00003. The FROG trace of the highly asymmetrical
derived-pulse is shown in Fig. 6. In view of the unique-
ness result relating the FROG trace to the pulse field, the
accuracy of the derived field should be indicated by agree-
ment of the measured and derived-pulse FROG traces. We
see that the two traces agree reasonably well, indicating
reasonably good convergence. To further evaluate the fit,
we computed the rms error between the two traces, ob-
taining 1.9% of peak per point for the 33 X 33 array,
which is better than the noise during the pulse, but worse
in the dark regions, and which is reasonable, given the
noise in the data. Fig. 7 shows the residuals, which ap-
pear random, but small discrepancies exist near the pulse
peak, indicating inadequacies in the assumed model. Fig.
8 shows the derived intensity and phase obtained in the
fit. Because the phase is approximately an upside-down
parabola, the chirp is approximately linear and positive
(w(t) = —de/dt). The main deviation from a simple pa-
rabola in Fig. 8 is a linear term, which reflected only a
frequency shift from that chosen for the reference pulse
frequency in the fit. The derived positively linearly
chirped, asymmetrical pulse of about 200 fs in duration
agrees with our expectations for an unrecompressed pulse
directly from the amplifier.

In order to verify that the pulse intensity obtained using
FROG is accurate, we measured the pulse third-order in-
tensity autocorrelation [§ P(t)I(t — 7) di] by integrating
the FROG trace over all frequencies for each delay. Fig.
9 shows the computed third-order intensity autocorrela-
tion of the derived pulse, in good agreement with the ex-
perimentally obtained result. This agreement is signifi-
cant because the chirp is responsible for an increase by a
factor of ~2 in the pulse length.

To partially check the accuracy of the derived phase,
we have also independently measured the spectrum of the
pulse. For comparison, we have computed the spectrum
of the derived pulse by Fourier transforming the derived
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Fig. 6. The FROG trace of the derived pulse for the data in Fig. 5.
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Fig. 7. The residuals of the fit. This figure is the difference between Figs.
6 and 5, with each plot normalized to have unity maximum. The scale here
is from — 1 (black) to 1 (white). Observe that the residuals are mainly gray
and deviations are relatively random, indicating a reasonably good fit.
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Fig. 8. The derived intensity and phase for the experimentally measured
pulse in Fig. 5. The phase is parabolic, indicating nearly linear, positive
chirp. There is a linear term in the phase associated with a frequency shift
from the reference wavelength of the fit, which is not significant. Other
deviations from a quadratic phase (linear chirp) are small.

pulse electric field. Fig. 10 shows these results. While the
widths are similar, some discrepancies occur in the wings.
These discrepancies probably reflect inadequacies of the
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Fig. 9. The third-order intensity autocorrelation of the derived pulse and
the measured pulse third-order intensity autocorrelation.
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Fig. 10. Measured- and derived-pulse spectra. Also shown for comparison
is a derived spectrum obtained by using the derived pulse intensity, but
assuming constant phase, instead of the derived linear chirp. This latter
spectrum is significantly narrower than the measured and derived spectra,
illustrating the importance of the derived chirp.

605 610

assumed model and should be reduced when a more so-
phisticated algorithmic method is used to extract the pulse
without assumptions regarding its intensity. For compar-
ison, a spectrum is also shown in Fig. 10 that has been
derived from the amplitude of the fit only and by assum-
ing a constant phase. It is clear that the derived nonzero
chirp has significantly broadened the spectrum of the de-
rived pulse.

It should be mentioned that the measurable pulse pa-
rameters (energy, pulse length, spectrum) exhibited both
shot-to-shot jitter and drift during the measurement, which
required over twenty minutes. Consequently, the derived
result is somewhat less meaningful than we would like—
perhaps an unavoidable problem for a low—_repetition—rate
multishot measurement such as this. In a future publica-
tion [43] we will report single-shot FROG measurements
that avoid these caveats.

We have also used fully compressed, transform-limited
pulses and pulses with negative chirp, finding the ex-
pected behavior in all cases. Fig. 11 gives sample spectra
obtained in these traces. In fact, the laser could be aligned
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Fig. 11. Self-diffracted-pulse spectra for transform-limited, positively
chirped, and negatively chirped pulses. For each pulse, spectra are shown
for three different delays. The shifts in spectral content both illustrate the
basis of FROG as a pulse diagnostic and demonstrate its use for rapid align-
ment of pulse compressors.

for the minimum pulsewidth easily by setting a nonzero
delay and adjusting the pulse compressor until the mean
wavelength of the spectrum of the self-diffracted light
equalled that of scattered input-beam light. Indeed, it
should be possible to build a simple autoaligning pulse
compressor by comparing the FROG signal-pulse wave-
lengths for positive and negative delays.

We mentioned that it is possible to use a polarization-
spectroscopy optical-gate arrangement. Such an arrange-
ment simplifies the interpretation (see Appendix C). While
results using a polarization-spectroscopy geometry will be
discussed in more detail in the future [43], we should point
out here that both geometries, self-diffraction and polar-
ization spectroscopy, have advantages. Self-diffraction
requires no optical components in the beams and thus
should be best for extremely short pulses. Polarization
spectroscopy, on the other hand, is perhaps easier to set
up and allows a greater delay range in single-shot arrange-
ments because a larger beam angle is possible.

In conclusion, we have developed and demonstrated a
new technique for characterizing ultrashort pulses. This
method involves obtaining simultaneous time- and fre-
quency-resolved information regarding the pulse. It is ex-
perimentally quite simple and should be particularly ef-
fective for measuring UV pulses and for extension to
single-shot operation. In addition, it should be a very con-
venient and intuitive method for displaying ultrashort
pulses.
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APPENDIX A
DERIVATION OF THE PULSE ELECTRIC FIELD FROM THE
SiGNAL FIELD

It is straightforward to obtain the pulse electric field
from the signal field E;,(z, 7). The signal field is given by
Esig(t, T) o [E(t)]2E*(t — 7), SO we can compute the quan-
tity:

g EL( + 7, 7) dr « S [E*¢t + DIEQ) dr

—o0

o E() H [Ext + D) dr] o< E@1) (A1)
where the bracketed quantity can be seen to be independ-
ent of ¢ by a simple change of variables (7 = ¢ + 7).

APPENDIX B
AMBIGUITIES IN FROG MEASUREMENTS

It is important to give a more rigorous discussion of the
ambiguities in FROG measurements. Phase retrieval is
known to possess ‘‘trivial’” ambiguities. If E;,(x, y) is the
correct solution, then additional ambiguous solutions can
also result [34]:

1) Ey(x, ¥) exp (ipg), where ¢, is a constant;
2) Ego(x — xo,y — Yo), where x, and y, are constants;
and

3) E:;g(_x’ _)’)
Despite their name, it is important to verify that these am-
biguities lead, in fact, only to trivial and insignificant am-
biguities in the pulse field. The first two ambiguities yield,
respectively, an arbitrary constant phase factor and an ar-
bitrary shift in time to the pulse field, which are of no
concern in ultrashort pulse measurement; that is, they are
not physically significant. The third ambiguity above is
inconsistent with (2) and thus does not occur in FROG.

Other ambiguities result only by chance, depending on
the precise data, and are exceedingly unlikely [29], [31]-
[33].

We should also mention that. the spectrogram is known
to have an additional ambiguity: the relative phase of well-
separated pulses in a multiple-pulse field [26]. To see this,
let Sg(w, 7) be the spectrogram of the function E(f). If
E(t) = E|(t) + E,(t), in which these two component fields
are well separated in time (i.e., by much more than the
window duration), then Sp(w, 7) = Sg(w, 7) + Sg(w, 7)
because the cross terms are zero. Since the spectrogram
is a squared magnitude, the relative phase of the two fields
is ambiguous. FROG, on the other hand, has cross terms
that are not present in the spectrogram because, in FROG,
the gate is essentially the pulse itself and is always as
broad in time as the pulse to be measured. Thus, FROG
avoids the only known physically significant ambiguity of
the spectrogram.

Finally, we also should mention that use of second-har-
monic generation (SHG) as the FROG nonlinearity pro-
vides an exception to these arguments. Use of SHG yields
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an ambiguity in the direction of time. To see this, we write
the SHG FROG signal as:

2

SHG —
Irroc(w, 7) =

S E@E( — 1) exp (—iwt) dt (B1)

Performing a simple change of variables ' = t+ — 7 and
dropping the primes, we find that:

2

ISHG . (B2)

FROG(®W, T) = S_ EME(E + 1) exp (—iwt) dt

Thus, the SHG FROG signal is always symmetrical in the
delay variable 7. As a result, among other ambiguities, it
will not be possible to distinguish the direction of time for
the pulse. Nevertheless, SHG FROG may have some ap-
plications, perhaps for low-intensity pulses.

APpPENDIX C
THE INSTANTANEOUS FREQUENCY VERSUS TIME FOR
SMooTH PULSES

For not-too-pathological pulse shapes, it is possible to
derive the approximate pulse instantaneous frequency di-
rectly from the FROG trace, without an iterative algo-
rithm. Observe from Fig. 1 that the signal pulse will be
centered at and have maximum strength at about the time
7/3 (an exact result for Gaussian-intensity pulses). Be-
cause the expression for the signal frequency in self-dif-
fraction is = 2w; — w,, the instantaneous frequency of
the signal pulse will be: Q(7) = 2w(7/3) — w(—27/3),
where w(f) is the instantaneous frequency of the pulse at
time ¢. To obtain w(¢) in terms of Q(7), we expand both
functions in Taylor series, obtaining:

N e (1))

©O = 2 - 2] €D
the first few terms of which are:
w(®) = Q0) + ;'O — 3 2”07
+ Q"0 + - - (C2)

where Q“(0) is the nth derivative of Q(7) evaluated at 7
= 0. For the simple case of linear chirp, if the FROG
signal frequency is Q(7) = a7, then w () = 3/4 at.

Use of a polarization-spectroscopy optical-gate ar-
rangement yields a simpler result. The signal field will be
given by Eg,(t, 7) o« E(t) |E(t — 7) |2, so the signal pulse
will be centered at 27 /3. The signal frequency will be
W — W + w; = w, 50 A7) w(27/3). Thus, for
polarization spectroscopy,

w(t) = Q3t/2). (C3)

For the simple case of linear chirp, if the polarization-
spectroscopy FROG signal frequency is Q(7) = a7, then
w(®) = 3/2ar. Thus, while the polarization-spectroscopy
result is simpler, self-diffraction FROG is more sensitive
to chirp.
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