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Abstract
We study the diffraction of Gaussian pulses and beams within the framework of boundary
diffraction wave theory. For the first time the boundary diffraction wave theory is applied to
pulsed Gaussian beams, and it is shown that the diffracted field of a pulsed Gaussian beam on a
circularly symmetric aperture can be evaluated by a single 1D integration along the diffracting
aperture at every point of interest. We compare theoretical simulations to experimental
measurements of ultrashort pulses diffracted off a circular aperture, an opaque disc, an annular
aperture, and a system of four concentric annular apertures. Using the recently developed SEA
TADPOLE measurement technique, we obtain micron spatial and femtosecond temporal
resolutions in the spatio-temporal measurements of the diffracted fields.
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1. Introduction

Spatio-temporal couplings of ultrashort pulses have come to
play ever increasing—both desirable and undesirable—roles
in important applications, including pulse compression,
shaping, imaging, and focusing (see e.g. [1–3] and references
therein). The propagation of an ultrashort pulse exposes
it to many such distortions, of which some remain rather
surprising. For example, even a simple circular aperture
creates a trailing pulse that, in the case of femtosecond laser
pulses, is quite distinguishable from the main pulse [4–9]. As
a result, detailed investigation of ultrashort pulse propagation
and focusing is also of fundamental interest in fields
that require focusing them, including nonlinear optics,
lithography, micro-machinery, biology, and medicine.

It turns out to be surprisingly enlightening to study the
diffraction of ultrashort pulses. Although somewhat forgotten,
the boundary diffraction wave (BDW) theory works well
for intuitively explaining the complex spatio-temporal effects

for ultrashort pulse propagation [4, 6]. The BDW theory,
which has been shown to be mathematically equivalent to
the Fresnel–Kirchhoff diffraction theory by Miyamoto and
Wolf [10, 11], provides an elegant alternative approach to
wave propagation. Though the theory was first developed
for plane and spherical waves, it has been shown by
Otis [12, 13] that BDW theory is also applicable to Gaussian
beams within the limits of the paraxial approximation. The
benefits of expressing the diffracted wave as a sum of
the so-called geometric wave and boundary wave become
especially obvious when considering ultrashort pulses, for
which the two waves often separate in time and space and
so can be more readily identified—provided that a suitable
measurement technique of such exotic events is available.

Fortunately, direct measurements of the spatio-temporal
electric field E(x, y, z, t) of arbitrary ultrashort pulses have
recently become possible using a technique based on spectral
interferometry called SEA TADPOLE [14–17]. It records
‘snapshots in flight’ or spatio-temporal slices of the field
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amplitude and phase with µm spatial and fs temporal
resolutions. For a detailed description of the method, see for
example [15, 18].

In the present paper, we will develop the expression for
the boundary wave for a diffracted Gaussian pulse in the case
of a circularly symmetric aperture. In section 3 the simulation
results are compared with the SEA TADPOLE measurements
of the diffracted Gaussian pulses in the case of a circular
aperture, an opaque disc, an annular aperture and a system
of four concentric annular apertures as a diffracting obstacle.

2. The boundary wave for a Gaussian pulse

The Gaussian beam is a well-known solution of the paraxial
wave equation. The field of a monochromatic Gaussian beam
with angular frequency ω can be written as [19]

U(ρ, z, ω) =
q(0)
q(z)

eik ρ2
2q(z) eikzH(ω), (1)

where q(z) = z + d − izR is the complex beam parameter
and zR = kw2

0/2 is the Rayleigh diffraction length, with z =
−d as the location of the waist of a smallest spot size w0.
H(ω) is a frequency-dependent parameter and k = 2π/λ is
the wavenumber, where λ denotes the wavelength.

If the diffracting aperture is located at z = 0, then
according to the BDW theory the diffracted wave at a point
P = (ρ, ϕ, z) in the region z > 0 behind the aperture can be
represented as [11]

UD(P, ω) = UB(P, ω)+ UG(P, ω). (2)

Here UG is a wave that propagates according to the laws of
geometrical optics and is equal to the incident wave in the
points of direct beam and is zero elsewhere. UB is called the
boundary wave and it can be expressed by a line integral along
the edge of diffracting aperture 0 as

UB(P, ω) =
∮
0

W(P,Q) dl, (3)

where W is a vector potential associated with the incident
field, l is the element vector of 0, and Q represents a typical
point in the aperture. Otis [12, 13] has shown that within the
paraxial approximation the vector potential W for a Gaussian
beam U(Q) can be expressed as

W(P,Q) = U(Q)
eiks

4πs

ŝ× p
1+ ŝ · p

, (4)

where s denotes the distance PQ and ŝ the corresponding unit
vector. The vector p represents the gradient of the phase of the
incident wave at Q i.e. p = ∇Q[z+ ρ2/2q(z)].

If the Gaussian beam is normally incident on a circular
aperture with a radius a, then the geometric wave is given
by [12, 20]

UG(P, ω) =

{
U(P, ω) for ρ < ρh(z),

0 for ρ > ρh(z),
(5)

where

ρh = a|q(z)/q(0)| (6)

is the shadow boundary. For the boundary wave the following
expression may be obtained [20]:

UB(P, ω) = U(Q, ω)
a

4π

∫ 2π

0
eiks(ψ)f (ψ) dψ, (7)

where

f (ψ) =
ρ[1− a2

2q2(0)
] cosψ − a[1− a2

2q2(0)
] −

az
q(0)

s(ψ)[s(ψ)− aρ
q(0) cosψ + a2

q(0) − z(1− a2

2q2(0)
)]
,

(8)

and

s(ψ) =
√

z2 + a2 + ρ2 − 2aρ cosψ. (9)

A Gaussian pulse can be written as

u(ρ, z, t) =
q(0)
q(z)

v

(
t −

z

c
−

ρ2

2cq(z)

)
e−ik0c(t− z

c−
ρ2

2cq(z) ),

(10)

where

v(t) = exp
(
−4 ln 2

t2

τ 2

)
(11)

is the temporal envelope of the pulse and τ the pulse duration
(FWHM of field strength). In order to develop an equation for
a diffracted Gaussian pulse a similar approach to [4] can be
taken, where the BDW theory was developed for plane and
spherical wave pulses. Next an equation for a boundary wave
for a diffracted Gaussian pulse is developed.

The polychromatic field can be expressed as a
superposition of monochromatic waves

u(P, t) = F−1
{U(P, ω)}, (12)

where F−1 denotes the inverse Fourier transform. For an
isodiffracting pulse defined by condition zR = const [21],
the Gaussian pulse as written in (10) can be obtained from
equation (1) by using the spectrum

H(ω) =
τ

4
√
π ln 2

e−
τ2

16 ln 2 (ω0−ω)
2
, (13)

where ω0 = k0c is the central frequency. According to the
linear properties of the Fourier transform, it is possible
to decompose the incident beam to its monochromatic
components and the field of a diffracted pulse can be written
similarly to (2):

uD(P, t) = uG(P, t)+ uB(P, t), (14)

where

uG(P, t) = F−1
{UG(P, ω)}, (15)

uB(P, t) = F−1
{UB(P, ω)}. (16)

The UG(P, ω) and UB(P, ω) are given correspondingly by
equations (5) and (7). uB(P, t) and uG(P, t) are the main and
boundary wave pulses [4].

The field of the pulse propagating according to the laws
of geometrical optics is straightforwardly determined from
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equation (5) as

uG(P, t) =

{
u(P, t) for ρ < ρh(z),

0 otherwise,
(17)

where the shadow boundary is defined by (6). The boundary
wave pulse can be obtained from the inverse Fourier transform
of equation (7) and can be written as

uB(P, t) =
a

4π
e−ik0(ct− a2

2q(0) )

×

∫ 2π

0
v

(
t −

a2

2cq(0)
−

s(ψ)

c

)
eik0s(ψ)f (ψ) dψ, (18)

where the functions f (ψ) and s(ψ) are given by equations (8)
and (9), respectively, and the temporal envelope v(t) by (11).
Equation (18) can be numerically integrated using an adaptive
quadrature method.

It should be noted that on the optical axis the integrand in
the equation of the boundary wave pulse is independent of the
angle ψ and an analytic expression for the electric field can be
derived

uB0(z, t) = −
a2

2s0(z)

q(z)

q(0)

×

1− z
q(0) +

a2

2q2(0)

s0(z)+ a2

q(0) − z(1− a2

2q2(0)
)
u(0, z, t − T(z)), (19)

where s0(z) =
√

a2 + z2 and

T(z) =
s0(z)

c
+

a2

2cq(0)
−

z

c
(20)

determines the time delay between the main and boundary
wave pulse. In the limiting case of plane and spherical waves
i.e. w0 →∞ or d→∞ respectively, this result is consistent
with the on-axis field of the boundary wave pulse given in [4].
In the following, equation (18) was used in the simulations to
calculate the field of diffracted pulses.

3. Boundary pulse simulations in comparison with
experimental results

At first, an overview of the experimental setup is given
with which the BDW simulation parameters were chosen
to match. As an ultrashort pulse laser source the KM Labs
Ti:sapphire oscillator with ∼33 nm of bandwidth and a spot
size of 4 mm (FWHM) was used. The central wavelength was
λ0 = 810 nm. Complete spatio-temporal measurements of
diffracted ultrashort pulses were carried out using a scanning
SEA TADPOLE technique [18, 22]. Briefly, it is a variation
of spectral interferometry in which a small spatial region of
the unknown field is sampled with a single-mode optical fibre
and interfered with a known reference pulse in a spectrometer.
E(λ) can be reconstructed for that spatial point from a
measured camera image and scanning the fibre throughout
the cross section of the unknown beam yields E(P, λ) which
can be Fourier transformed to the time domain to retrieve
E(P, t). The plots of the measurements can be depicted as

Figure 1. Optical microscope images of the boundaries: (a) the
opaque disc; (b) the single annular slit; (c)–(f) the individual slits of
the system of four concentric annular slits from innermost to
outermost.

‘snapshots in flight’ or spatio-temporal slices of the amplitude
of the electric field of the pulses. As our setup had cylindrical
symmetry, the scanning was performed with the fibre only
along the x-axis at y= 0. In order to study the z-dependence of
the diffraction pattern, the diffracting aperture was translated
away from the fibre.

The diffracted field of ultrashort pulses was measured
behind four different obstacles: a circular aperture, an opaque
disc, an annular slit and a system of four concentric annular
slits. The diameter of the circular aperture was 4.4 mm and
it was made of 3.2 mm thick metal. The 4 mm diameter
disc was fabricated of aluminum sheet with a thickness of
0.2 mm and was glued onto a thin glass substrate. Annular
slits were engraved onto metal-coated glass substrates. The
single slit had a diameter of 5.4 mm and a width of 10 µm,
the dark region of the single annular slit transmitted 0.63%
of the light intensity at the used wavelength. The concentric
annular slits had diameters of 2.1, 4.7, 6.3, and 12.5 mm with
corresponding slit widths of 20, 10, 60, and 610 µm. During
the experiments it was noted that the smoothness of the edge
contour of the obstacle was critical for the intensity of the
boundary wave pulse. Figure 1 shows the optical microscope
images of the edge contours of the obstacles. However, the
thickness of the diffracting aperture did not seem to alter the
observability of the boundary wave pulse.

Computer simulations were carried out by using
equation (14), where the geometric pulse was defined by (17)
and the boundary wave pulse was obtained by numerical
integration in (18). Numerical integration was carried out by
Mathcad. The simulation parameters have been taken closely
similar to the experimental setup. The integrand itself is rather

3



J. Opt. 14 (2012) 015701 P Piksarv et al

inconvenient for integration as it is constant on the z-axis and
becomes quickly oscillating off-axis. An adaptive quadrature
method gave the best results in terms of time spent versus
accuracy. Simpson’s rule, which was used for evaluating
diffraction integrands in [23], resulted in less accurate results
within the same computational time. In the case of insufficient
partitions N, there appeared additional ‘boundary waves’ as is
shown in figure 2. On the other hand, a non-adaptive method
might be suitable in the case of a small radial and temporal
region of interest and may be easier to implement with high
speed vector operations.

3.1. Circular aperture and disc

Diffraction from a circular aperture and a circular disc
is a well-known problem that has been thoroughly stud-
ied. Usually, however, diffraction is considered only by
monochromatic illumination. In the case of femtosecond laser
pulses, diffraction is a spatio-temporal effect, which can be
understood in terms of the BDW theory. There have been
several indirect indications of the temporal characteristics of
diffracted ultrashort pulses [5, 24], but not until very recently
has the full spatio-temporal nature of diffraction been directly
measured [6]. In the present work, complete measurements of
the diffracted ultrashort laser pulses are compared to the BDW
theory that has been generalized to apply to Gaussian pulses.

The measured spatio-temporal field of a pulse diffracted
by a 4.4 mm diameter aperture alongside the corresponding
simulations is given in figure 3. The normalized amplitude
of the field is indicated by the colour map. As the optical
path length is kept constant on the reference arm of the

Figure 2. Results of different numerical integration methods for
evaluating the boundary wave diffraction integral for a 40 fs plane
wave pulse diffracted by a circular aperture 4 mm in diameter
20 mm from the aperture. (a) Simpson’s method with N = 199
partitions; (b) N = 499 partitions respectively; (c) Mathcad’s
adaptive quadrature method.

interferometer, the pulse, which would be registered at t =
0 fs, would propagate at the speed of light. Hence the
superluminal velocity of the boundary wave pulse can be

Figure 3. Comparison of the measured and simulated light field amplitudes of an ultrashort pulse diffracted by a circular aperture at three
distances behind the aperture.
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Figure 4. Propagation and evolution of the diffracted pulse behind an opaque disc.

qualitatively determined from the experiment figures as it
catches up with the main pulse by increasing the travel
distance z. The velocity of the boundary wave pulse on
the optical axis decelerates from ∞ at the aperture plane
z = 0 mm to the speed of light c at z→∞.

Figure 3 shows good agreement between the BDW
theory and the experiment. Variation in the brightness of
the main pulse is likely due to the thickness and imperfect
surface quality of our aperture. In the temporal profile of
the measured impulses there appear ripples before and after
the main pulse that are not present in the simulation. This
is likely due to the zero-filling before taking the Fourier
transform of the measured spectrum. As with the current
camera the dark level is tilted, so the elimination of this jump
in the measured spectrum is complicated. To some extent
the temporal profile of the measured pulses may be affected
by the spectral response curve of the camera, but the most
important difference originates from the idealization of the
pulse spectra to Gaussian not taking into account the real
laser spectra. Despite the minor discrepancies, the results
show good agreement between the computer simulations and
measurements.

The diffraction from an opaque circular disc can be easily
derived according to Babinet’s principle. The diffracted field
can be written as

u′D(P, t) = u′G(P, t)− uB(P, t), (21)

where

uG(P, t) =

{
u(P, t) for ρ > ρh(z),

0 otherwise,
(22)

and uB(P, t) is given by (18).

The measurements along with the corresponding simula-
tions are shown in figure 4. The similarity with the previously
registered diffraction pattern is obvious.

As in the present case the boundary wave pulse and
the geometric pulse do not overlap on the optical axis, the
measurement of the Arago spot requires a more sensitive
measurement device due to the characteristics of the SEA
TADPOLE technique. Therefore, the measurements shown in
figure 4 are noisier than in the case of a circular aperture. Also,
the constructive interference on the optical axis is decreased
by any irregularities in the shape of the obstacle and by the
serration of the boundary.

The fact that the shadow of an opaque disc starts filling
up with light from the centre according to the wave nature
of light seems a peculiar effect according to the mainstream
diffraction theory or in the case when the diffraction of
light is understood literally as bending of the light waves
into the shadow region behind an obstacle. On the contrary,
according to the BDW theory, the appearance of the Arago
spot on the optical axis right behind the obstacle is easily
comprehensible.

3.2. Annular slits

Combining the two problems discussed above we look into
the diffraction of the fs pulse on an annular slit described by
a radius a and slit width of 2δa. Similarly, the diffracted pulse
can be expressed by the sum of the geometric pulse and the
boundary wave pulse:

up(P, t) = u′′G(P, t)+ u′′B(P, t), (23)
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Figure 5. Measured and calculated electric field amplitude of pulse generated behind a thick annular slit on a partially transparent substrate.

where

u′′G(P, t) =


u(P, t) if ρ > ρh(z, a− δa)

and ρ < ρh(z, a+ δa),

0 otherwise,

(24)

The boundary wave pulse for the case of an annular slit can
be expressed as a sum of the boundary waves of the inner and
outer edge of the slit

u′′B = uB(P, t, a+ δa)− uB(P, t, a− δa), (25)

where uB(P, t, a) is given by (18) if the radius of the boundary
curvature is a. If the width of the annular slit is small enough,
then it can be expected that the different boundary wave pulses
are not distinguishable in time and space.

Next, the diffracted pulse was measured after the annular
slit on a slightly transparent substrate. The measurements
with corresponding simulations are shown in figure 5. The
partial transmission provided a useful reference pulse, which
propagates at the speed of light and should remain at the
position t = 0 fs even if the optical path lengths on the
reference and measurement arms of the interferometer should
have somehow changed during the measurement series.
Therefore, this series of measurements is a good example of
the superluminal characteristics of the boundary wave pulse.

Despite the narrow slit width, the geometric pulse could
not be neglected in the simulations, otherwise the diffracted
field would be discontinuous in the direct pulse region
according to the BDW theory. The slight discrepancy between
the measured and the simulated pulses near the optical axis is
probably caused by the uncertainty of measured distance z.

Further, the diffracted pulse was measured after a mask
which consisted of four concentric annular slits. The results

are shown in figure 6. In the first two pictures the boundary
waves of the three smallest slits are seen, in the third picture
they have caught up with each other and formed one pulse.
In the last picture the two trailing pulses correspond to the
inner and outer boundary of the largest annular slit. In the first
measurement at z = 22 mm there appears to be also a weak
leading pulse due to the partial transparency of the metallic
coating. As it does not appear on other measurements and
overlaps in time with smaller boundary pulses further away
from the mask, it has not been taken into account in the
simulations.

These measurements agree with the spatio-temporal
structure shown in [1]. In the present case the number of ring
apertures is significantly lower and the individual boundary
wave pulses are more separated. Especially in the case of z =
242 mm the measurement resolves the boundary wave pulse
of the inner and outer boundary of the largest ring aperture.
In figure 6 it is remarkable how refined is the complex
spatio-temporal structure of the diffracted pulse resolved by
the SEA TADPOLE measurement.

The last results show that more complicated diffraction
problems can also be understood by rather simple treatments
in the time domain. Even quantitatively, all of the setups
discussed in this section are calculated by 1D integration
from 0 to π at every point of interest. According to the
basis of the BDW theory, the results are equivalent to
Fresnel–Kirchhoff’s theory and not restricted by Fresnel or
Fraunhofer approximations.

4. Conclusions

Employing time-domain characterization of diffraction, the
BDW theory aids the general understanding of the diffraction
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Figure 6. Measured and calculated electric field amplitude of a pulse diffracted by a system of four concentric annular slits of different
widths and diameters.

phenomena. It is relatively simple to evaluate qualitatively
the propagation of ultrashort pulses by expressing the
diffracted wave field as the sum of the boundary and
geometric waves. The BDW theory can be applied to
Gaussian pulses, and the diffracted field can be evaluated
by a simple 1D integration for every point of interest. The
experimentally simple and high-spectral resolution variant
of spectral interferometry SEA TADPOLE is an excellent
method for the characterization of ultrashort pulsed wave
fields that are complex in both space and frequency (time).
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supported by the Estonian Science Foundation grant 7870.
R Trebino and P Bowlan have been supported by NSF
fellowship IGERT-0221600, NSF SBIR grant 053-9595.
P Piksarv has been partially supported by graduate school
‘Functional materials and processes’ receiving funding from
the European Social Fund under project 1.2.0401.09-0079 in
Estonia.

References

[1] Mendoza-Yero O, Alonso B, Varela O, Mı́nguez-Vega G,
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