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Abstract Multi-shot pulse-shape measurements of trains of
ultrashort pulses with unstable pulse shapes are studied. Mea-
surement techniques considered include spectral-phase in-
terferometry for direct electric-field reconstruction (SPIDER),
second harmonic generation frequency-resolved optical gating
(FROG), polarization gate FROG, and cross-correlation FROG.
An analytical calculation and simulations show that SPIDER
cannot see unstable pulse-shape components and only mea-
sures the coherent artifact. Further, the presence of this insta-
bility cannot be distinguished from benign misalignment effects
in SPIDER. FROG methods yield a better, although necessarily
rough, estimate of the pulse shape and also indicate instabil-
ity by exhibiting disagreement between measured and retrieved
traces. Only good agreement between measured and retrieved
FROG traces or 100% SPIDER fringe visibility guarantees a
stable pulse train.

Pulse-shape instabilities and their measurement

Michelle Rhodes1,∗, Günter Steinmeyer2, Justin Ratner1, and Rick Trebino1

An ideal measurement technique is not only accurate, but
also robust. If the accuracy of a measurement is too eas-
ily compromised by difficult experimental circumstances,
then extreme care must be taken in interpreting its results.
In particular, multi-shot pulse-shape measurements of un-
stable pulse trains have yielded confusing or misleading re-
sults. Specifically, intensity-autocorrelation measurements
of trains of differing pulses are well-known to yield a nar-
row spike at zero delay atop a broad background. The spike,
referred to now as the “coherent artifact,” is a measure of the
coherent, nonrandom, or repeatable component of the pulse
train. While some have mistakenly interpreted its width as
a measure of the pulse width, the broad background is the
correct indicator of the actual pulse width. And the pres-
ence of a coherent artifact actually indicates instability or
complexity in the pulse train. More precisely, the coherent
artifact represents only the shortest repeatable substructure
in the pulses and ignores any variations in the pulses.

1. Historical overview

The coherent artifact has caused confusion in laser pulse
measurement for almost as long as pulse measurements
have been conducted. In the late 1960s, significant con-
fusion arose when researchers noticed that peaks could
be observed in two-photon fluorescence (TPF) intensity-
autocorrelation measurements [1] even when the lasers in-
volved were not mode-locked [2–4]. In 1968, several au-
thors [5,6] used previous work on light coherence [7,8] and
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correlation functions [9, 10] to explain the variety of auto-
correlation traces that could result from measuring laser
light. It was established that a peak always appears at zero
delay in an autocorrelation [6,11–15] unless the light under
measurement is perfectly monochromatic and has an infi-
nite coherence length. All broadband sources yield a cen-
tral peak, and the width of this peak is approximately equal
to the inverse spectral width, called the coherence time
[14, 15]. This peak should not be assumed to be indicative
of a short pulse. It is sometimes called a coherent artifact be-
cause it arises from coherence effects, but it occurs in single-
shot measurements involving only the pulse intensity (e.g.
autocorrelation) and should not be confused with multi-shot
phenomena discussed later. In addition to a central peak, au-
tocorrelations of complex pulses will also show a pedestal
[12, 16, 17]. The relative strengths of the pedestal and co-
herence peak provide useful information about pulses. For
example, broadband fluorescence and white-light sources
have a coherence spike but no pedestal. Such sources usu-
ally have much longer pulse lengths, so their pedestals
are difficult to separate from the usual TPF background.
Imperfect mode-locking of lasers tends to yield shorter,
noisy pulses whose autocorrelations have cusp-like coher-
ence spikes on top of a noticeable broad pedestal. A fully
mode-locked laser yielding transform-limited pulses has
a very strong coherence peak and no pedestal. For good
reviews of this discovery process, see [12] and [15].

Once clear criteria for measurements that showed true
short pulses, not just coherent artifacts, had been estab-
lished and experimentally verified [12, 18, 19], attention
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turned to the shape of the autocorrelation, especially the
pedestal. The pedestal defines the temporal resolution in
spectroscopic pump-probe experiments and is therefore of
far greater interest than the shorter coherence time. The
temporal duration of the enveloping pulse profile is conse-
quently referred to as the pulse duration in the following,
because the duration of individual sub-pulses is of little rel-
evance for time-resolved experiments. Even though several
authors noted that the contrast and shape of the autocor-
relation and pedestal were not particularly sensitive to the
pulse profile [17, 20–23], there were no alternative optical
techniques available at the time. The problem was com-
plicated by the fact that actual pulse lengths were typically
much longer than the corresponding coherence time [6,19].
This problem was even further complicated by the fact that
most TPF measurements, with only a few exceptions [24],
were in fact averages over many pulses in a pulse train. Be-
cause the intensity-autocorrelation pulse-retrieval problem
had so many ambiguities, researchers could only guess at
the actual pulse distortions present [20, 25, 26].

As a result, misinterpretations were common. For exam-
ple, Treacy believed that he had fully compressed his pulses
by compensating for positive frequency chirp [27,28]. How-
ever, Fisher and Fleck [29] pointed out that Treacy’s results
(showing a short spike atop a broad background) were con-
sistent with the output pulses of the laser each having a
different random walk for their phase versus time. Com-
pensating such pulses for positive chirp would result in
random temporal structure in the intensity that varied from
pulse to pulse. The multi-shot autocorrelation of such a train
of pulses would be the same as that reported by Treacy, and
his results therefore did not prove that the uncompensated
pulses had positive chirp. This was the first identification
of the multi-shot coherent artifact. The insight that a train
of varying pulses could mimic a shorter-pulse, stable train
in a measurement was quite surprising (see Fig. 1).

As laser technology improved and pulse trains became
more stable, these types of issues became less prominent but
did not disappear. In the late seventies, researchers had trou-
ble matching autocorrelations of synchronously pumped
dye lasers with a pulse shape [31–34]. The closest pulse
profile was a single-sided exponential pulse; however, Van
Stryland [35] argued that the autocorrelations were also
consistent with a train of Gaussian pulses with a distribu-
tion of pulse widths. Birmontas et al. [36] extended Van
Stryland’s analysis to include variations in pulse energy as
well as duration and showed that the autocorrelation under-
estimates the average pulse length of unstable trains when
the fluctuations in pulse power and length are correlated. It
took more than a decade to unveil the physics behind the ob-
served unstable synchronously pumped mode-locking and
to find a means for stabilization of the mode-locking pro-
cess [37, 38].

The non-uniqueness of the autocorrelation function
[39–41] combined with the possibility of unstable trains re-
mained a significant problem for laser pulse measurement
until the development of more powerful pulse-measurement
techniques and further improvements in laser technology.
Unlike autocorrelation, modern pulse measurement tech-

Figure 1 Top: Double pulse and its background-free autocorre-
lation [30]. Bottom: A train of variably spaced double pulses and
their multi-shot autocorrelation. The coherent artifact results from
the short nonrandom coherent component of the double pulses
(a single pulse), while the broader background results from the
overall average pulse length (the combination of both pulses).
This trace is typical of autocorrelations of nearly all trains of un-
stable, complex pulses.

niques do not suffer from non-uniqueness (except for triv-
ial ambiguities) and provide not only the intensity profile,
but also the phase of pulses. However, their reliability in
the face of pulse trains with pulse-shape instabilities has
only recently begun to be examined in detail [30, 42]. And
while synchronous pumping has been widely replaced by
more robust and stable passive mode-locking techniques,
unstable pulse trains often still arise, especially in super-
continuum compression experiments [43–45].

While instabilities besides pulse-shape fluctuations cer-
tainly exist, they are typically of little relevance for pulse
measurement techniques, in particular if the techniques are
completely self-referenced. Beam pointing fluctuations as
well as pulse energy variations may certainly increase the
noise levels in the detection and require suitable averaging
techniques [46]. Carrier-envelope phase fluctuations [47]
could be another possible noise source for few-cycle laser
pulses. Such effects can clearly be seen when measuring
cross-correlations or interferograms using two subsequent
pulses from a pulsed laser source [48,49]. It is understood,
however, that carrier-envelope effects could otherwise only
pose an issue for pulses whose coherent spectra span more
than an octave [50], a situation far less common than the
coherence spike. Moreover, all mode-locked lasers exhibit
pulse timing jitter [51], which is typically characterized
by RF measurement techniques [52]. However, such tech-
niques do not have the resolution to measure ultrashort pulse
shapes or pulse-shape fluctuations, making them ill-suited
to many applications where intensity and phase measure-
ments are used. All measurement techniques discussed in
the following analysis employ pulse-replicas that are de-
rived from the same oscillator or amplifier pulse. Pulse ar-
rival time cannot be measured in this case, and variations in
arrival time are unobservable. Even the cross-correlation
variants of FROG and SPIDER nearly always use an
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undistorted pulse from the same laser as a reference, remov-
ing the problem of synchronizing multiple laser sources.
This makes these pulse measurement techniques com-
pletely immune to timing jitter noise. More importantly,
none of the noise sources mentioned above cause a multi-
shot coherence spike, as pulse-shape instabilities do.

When considering the possibility of pulse-shape insta-
bilities, it becomes clear that an intensity-and-phase pulse-
shape measurement has a responsibility to give some mea-
sure of the reliability of its result, which should include
the stability of the pulse train. In particular, the technique
should not introduce new non-trivial ambiguities resulting
in confusion, for example, between a stable train of very
short pulses and an unstable train of much longer ones.
Given that a measurement can only give a single intensity
and phase, and so cannot represent all the pulses of an unsta-
ble train, a good measurement technique should still give an
approximation of a typical pulse. In addition, it is vital that
there are indicators of instability. Although many modern
pulse-measurement techniques have single-shot capability,
including all the techniques discussed in this paper, multi-
shot measurements are extremely common in practice.
Consequently, multi-shot versions of pulse-measurement
techniques must be evaluated to determine how they re-
spond to unstable pulse trains.

In this paper, measurements of unstable pulse trains
are simulated in order to study the performance of several
self-referenced pulse measurement techniques, including
spectral-phase interferometry for direct electric-field recon-
struction (SPIDER)[53, 54], second-harmonic-generation
(SHG) frequency-resolved optical gating (FROG)[41], and
polarization-gate (PG) FROG. The reference-pulse-based
technique cross-correlation FROG (XFROG) will also be
examined. Our unstable train of pulses consists of a stable
flat phase Gaussian pulse plus a random pulse. For this case,
it is also possible to derive an analytical expression for the
resulting SPIDER measurement.

2. Analytical calculations

In its ideal form, SPIDER involves measuring the spectrum
of the sum of a pulse and a frequency-shifted and delayed
replica of itself. Assuming that the pulse train has a stable,
consistent component E(ω) and a randomly varying com-
ponent Erand(ω), the expression for the ideal multi-shot
SPIDER trace is:

SSPIDER ∝ |E(ω) + E(ω + δω) exp(iωT ) + Erand(ω)

+ Erand(ω + δω)exp(iωT )|2 (1)

where T is the internal pulse separation. This expres-
sion contains several simplifying assumptions. Because the
shear comes from stretching a pulse replica, it must be as-
sumed that a stretched unstable pulse still has linear chirp.
Further, the original pulse should still be short enough to
only overlap with a small portion of the stretched pulse, or
the frequency shear will not be constant for all parts of the
sheared pulse. Consideration of these effects significantly

complicates interpretation of the trace, and so they will be
ignored here. Multiplying out all the terms:

SSPIDER ∝ |E(ω)|2 + |E(ω + δω)|2 + |Erand(ω)|2
+ |Erand(ω + δω)|2 + 2Re{E∗(ω)E(ω + δω) exp(iωT )

+ E∗(ω)Erand(ω) + E∗(ω)Erand(ω + δω) exp(iωT )

+ E∗(ω + δω) exp(iωT )Erand(ω)

+ E∗(ω + δω)Erand(ω + δω)

+ E∗
rand(ω)Erand(ω + δω) exp(iωT )} (2)

Even if only the zeroth-order phase of the random pulse
is allowed to vary, the random field will be positive as often
as it is negative. Thus, any terms that have only one factor of
the random field Erand(ω) will sum to zero in the multi-shot
average, yielding:

SSPIDER ∝ |E(ω)|2 + |E(ω + δω)|2 + |Erand(ω)|2
+ |Erand(ω + δω)|2 + 2Re{E∗(ω)E(ω + δω) exp(iωT )

+ E∗
rand(ω)Erand(ω + δω)exp(iωT )} (3)

Now this expression can be written in terms of the spec-
tra of the stable and random components, S(ω) and Srand(ω),
and their spectral phases, ϕ(ω) and ϕrand(ω), noting that the
stable component has a constant spectrum and phase:

SSPIDER ∝ S(ω) + S(ω + δω) + Srand(ω)

+ Srand(ω + δω) + 2
√

S(ω)
√

S(ω + δω)

· cos[ϕ(ω + δω) − ϕ(ω) + ωT ]

+ 2
√

Srand(ω)
√

Srand(ω + δω)

· cos[ϕrand(ω + δω) − ϕrand(ω) + ωT ] (4)

Finally, rewriting the expressions in the cosines in terms
of the group delay as a function of frequency for each
component, τ (ω) = dϕ/dω and τrand(ω) = dϕrand/dω:

SSPIDER ∝ S(ω) + S(ω + δω) + Srand(ω)

+ Srand(ω + δω)

+ 2
√

S(ω)
√

S(ω + δω) cos[τ (ω)δω + ωT ]

+ 2
√

Srand(ω)
√

Srand(ω + δω)

· cos[τrand(ω)δω + ωT ] (5)

The net result is a sum of the spectra and sheared spec-
tra, plus the well-known fringe term for the stable compo-
nent and another for the random component. The random
fringes are averaged over many shots, however. If τrand(ω)
is constant for a given pulse, but varies from pulse to pulse,
corresponding to a random component with a variable ar-
rival time (such as a satellite pulse, as in the simple case of
Fig. 1), then this term will begin to wash out. If τrand(ω)δω
varies by as much as 2π in this way, then the fringes from the

www.lpr-journal.org C© 2013 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



LASER & PHOTONICS
REVIEWS

4 M. Rhodes et al.: Pulse-shape instabilities and their measurement

Figure 2 Comparison of SPIDER and SHG FROG for a random train of pulses [30]. Red curves indicate intensity, blue phase, green
spectrum, and purple spectral phase. The black dotted SPIDER traces are fits assuming flat-phase Gaussian pulses and unequal
double-pulse energies. SPIDER retrieves only the nonrandom component of the pulse trains, and shows decreasing fringe visibility.
SHG FROG misses the pulse structure, but retrieves longer, approximately correct pulse lengths and shows disagreement between
measured and retrieved traces.

random component wash out completely. In this case, the
only contribution of the random field to the SPIDER trace
will be some background. Unfortunately, such a back-
ground can also be caused by misalignment and other ever-
present and typically harmless effects, so, in practice, it is
usually ignored. As a result, it is essentially impossible to
distinguish the above harmless effects from the existence
of a random component. The impact of higher-order phase
variations in the random component is not immediately
clear, and this will be explored in the simulations. However,
the above analytical calculations suggest that SPIDER may
be unable to see most random variations in multi-shot mea-
surements. Indeed, previous work [30] shows precisely this
result (see Fig. 2). This will be further investigated by the
simulations.

Unfortunately, FROG does not lend itself as easily to
analysis. FROG is a spectrally resolved autocorrelation,
also known as a spectrogram. The general expression for a
FROG measurement is:

IFROG(ω, τ ) =
∣∣∣∣
∫ ∞

−∞
E(t)Eg(t − τ ) exp(−iωt)dt

∣∣∣∣
2

(6)
This is the Fourier transform of the signal field, created

by the interaction of the pulse, E(t), and its gate, Eg(t − τ ),
in a nonlinear medium. The resulting measurement is a

function of both frequency ω and delay τ . The gate function
depends on the nonlinearity: it is the field itself for SHG
FROG, the field intensity for PG FROG and a reference
field for XFROG.

Expressing the fields in Equation (6) in terms of stable
and unstable components yields no obvious cancellations
or clear relationships, so no further analytical analysis will
be presented here.

It should be mentioned, however, that an important fea-
ture of all versions of FROG is that the measured trace
contains more points than are strictly necessary to retrieve
an answer, which can help safeguard against spurious mea-
surement effects. As a result, there are simple consistency
checks that can be calculated. Summing the trace over de-
lay produces a frequency marginal which is related to the
spectrum of the pulse [41]. Summing over frequency gives
a delay marginal, which is typically related to an autocorre-
lation. These quantities are useful in ensuring that the mea-
surement has been performed properly and the pulse has
been retrieved from the measured trace correctly. Also, sim-
ple agreement between the measured and retrieved traces is
a general indicator of a high-quality measurement. Because
FROG uses both time and frequency domains to determine
pulse properties, in the case of instability it is likely to have
discrepancies in both domains and between the measured
and retrieved traces.
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3. Simulation details

For the simulations, pulses were constructed consisting of
a stable and a random component. The stable component is
a flat phase Gaussian with temporal FWHM 20 δt, where
δt is the temporal sampling rate. The frequency sampling
rate is δω = 2π /Nδt, where N is the array size (4096). In or-
der to avoid distorting the spectrum of the combined pulse
train, the random component of each pulse began with the
same spectrum as the nonrandom component. A random
spectral phase was applied to the random component in
the frequency domain, and a wide Gaussian envelope was
applied in the time domain. Next, the amplitude of the ran-
dom component was multiplied by a constant so that, on
average, it had similar intensity at t = 0 to the nonran-
dom component. Consequently, the energy contained in the
random pulse is larger than in the nonrandom pulse, since
the random component is much longer in time. The ran-
dom and stable components were added together to create
a pulse. The amplitude adjustment was verified to be appro-
priate afterward by calculating the average intensity profile
of the train and checking that the transition from the non-
random spike to a broad background occurred near 50% of
the peak intensity. The average width of the pulses in the
train was adjusted by changing the width of the Gaussian
time envelope. Two pulse trains were constructed, one with
an average FWHM pulse length of 59 δt and the other with
length 192 δt, each with 5000 pulses. The average spectra
of both trains are nearly identical to the spectrum of the
nonrandom component. Some example pulses are included
in the left columns of Figs. 4–5. The same two random pulse
trains were used to compute traces for all four measurement
techniques.

In order to allow comparisons between the coher-
ence properties of these pulse trains and other works, the
resulting coherence of the trains is computed from the
modulus of the complex degree of first-order coherence
[55]:

ḡ(1)(ω) =
∣∣∣∣∣

〈E∗
i (ω)E j (ω)i �= j 〉√〈|Ei (ω)|2|E j (ω)|2〉

∣∣∣∣∣ (7)

where indices i and j label numerically generated individ-
ual spectra Ei (ω) and E j (ω), respectively, and ω is the
angular frequency. Figure 3 shows the resulting coher-
ence averaged over all pulse combinations for the pulse
train with an average FWHM pulse length of 59 δt as
well as that for length 192 δt. In both cases, maximum
coherence is reached near the center frequency δω = 0,
with ḡ(1) values of about 0.14 and 0.04, respectively. For
the case of 59 δt, the coherence quickly decreases further
away from the center frequency, whereas it stays nearly
constant for 192 δt. As perfect coherence is indicated by
ḡ(1) = 1, it is plain to see that noise increases with increas-
ing FWHM pulse length in our parameterization of the
problem.

Figure 3 Average modulus of the complex degree of first-order
coherence ḡ(1)(ω) for the two pulse trains considered in the simu-
lations. Perfect coherence, i.e., identical pulse shapes in the train
are indicated by ḡ(1) = 1.

4. Results and discussion

4.1. SPIDER

SPIDER traces were computed using an array size of
N = 4096 and pulse separation T of 450 δt. The frequency
shear used was 9 δω, corresponding to 10% of the FHWM
bandwidth of the trains. The trace was averaged over all
5000 pulses in a train, and then retrieved using the Takeda
algorithm typically employed in SPIDER [56]. In all cases,
SPIDER yields only the nonrandom component (the coher-
ent artifact). Less than 100% fringe visibility is the indicator
of the presence of instability (see Fig. 4). Consistent with
the analytical calculations, train 2 has much more back-
ground than train 1. The group delay is expected to vary
over a larger range from pulse to pulse in train 2, and the
background should therefore be larger. For train 1, higher
order phase variations appear to cancel out of the SPIDER
measurement while leaving very little background. As a re-
sult, SPIDER misses a great deal of structure in the random
trains.

Of course, background also occurs in SPIDER from a
number of benign measurement effects. Any differences
between the pulse replicas are likely to cause background,
including differences in energy split, spatial overlap, spatial
mode-matching, as well as any damage spots or dust present
in only one arm of the experimental setup. To demonstrate
that such effects can be indistinguishable from instabil-
ity in the pulse train, a second SPIDER trace is fitted
to the multi-shot traces (see Figs. 2 and 4), constructed
by a Gaussian pulse with unequal energy in the internal
double-pulse in the SPIDER setup. The pulse width of
the Gaussian and the relative energy of the double pulse
are allowed to vary. In all cases, the fit is in phase with
the multi-shot trace, and will therefore give the same SPI-
DER retrieval. In summary, in SPIDER measurements, it
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Figure 4 Simulated multi-shot SPIDER and SHG FROG measurements of random and nonrandom trains. The black dotted SPIDER
traces are fits assuming flat-phase Gaussian pulses and unequal double-pulse energies. SPIDER retrieves the nonrandom component
with decreasing fringe visibility: 100%, 87%, and 20% respectively. SHG FROG exhibits an autocorrelation-like coherent artifact: the
narrow blue spikes in the measured traces for the two random trains. SHG FROG fails to see the pulse structure, but the measured
and retrieved traces disagree, providing at least an indication of the instability. G errors are 0.0002, 0.014, and 0.02, and G′ errors are
0.45%, 19%, and 19%.

is difficult to distinguish between background due to these
benign, practical effects and more serious instability. Thus
very close to a 100% fringe visibility is necessary for an
accurate estimate of the pulse length based on a SPIDER
measurement. For example, a SPIDER fringe visibility of
87% (a better than average value) corresponds to a mea-
sured pulse length too short by a factor of approximately 3
(see Fig. 4).

4.2. FROG

FROG traces were computed using a sampling rate of 4 δt
and 4 δω to reduce the size of the traces and to be consis-
tent with common experimental practice. The pulses were
also cropped from the SPIDER array size of 4096 to 1024,
yielding a FROG trace size of 256 × 256. The XFROG
measurement used a flat phase Gaussian reference pulse
with a temporal FWHM of 43 δt. All FROG versions were
simulated in the single-shot configuration, and the traces
were averaged over all pulses in a train. The resulting mea-
sured traces show a spike similar to autocorrelation’s fa-
miliar coherent artifact in the center, with a broad, smooth
background around it. Because no single pulse exists that

can possibly cause the measured FROG trace, the FROG
code tends to stagnate and be sensitive to the initial guess.
The maximum number of iterations of the algorithm was
limited to 1000. This limit is more than adequate for single
pulses from train 2 to converge on the first attempt. Re-
gardless of convergence, the algorithm was run five times
for each averaged measured trace, using different random
noise for the initial condition each time, as suggested in
Ref [57]. Because high rms error is a strong indicator of
measurement problems, and because non-convergence of
the algorithm in such a pathological situation is a concern,
the retrieved trace with the least error was chosen from the
five results. Retrieved FROG traces for the random trains
show very clear differences from the measured traces. For
the unstable trains, the algorithm was unable to converge
on all attempts for the averaged traces, and doubling the
iteration limit to 2000 had little to no effect on the result-
ing rms error. This strongly suggests that convergence is
not possible for these traces. Both the G error and the G′
error (see Appendix A) are unacceptably large, especially
for noiseless theoretical traces. SHG FROG (Fig. 4) has
the smallest errors, consistent with having some trivial am-
biguities not present in the other FROG techniques used.
It retrieves 69 δt and 293 δt as the lengths of the trains,
overestimating their actual lengths of 59 δt and 192 δt.
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Figure 5 Simulated multi-shot PG FROG and XFROG measurements of random and nonrandom trains. The same trains are used as
in Fig. 4, but different example pulses are shown above in order to show more of the pulses involved. Despite the autocorrelation-like
coherent artifacts and smooth backgrounds in the measured traces, FROG infers pulse structure. PG FROG has G errors 0.0002,
0.016, and 0.03 and G′ errors 0.39%, 27%, and 41%. XFROG has G errors 0.0001, 0.026, and 0.041 and G′ errors 0.22%, 34%,
and 34%.

PG FROG and XFROG (Fig. 5) retrieved temporal profiles
that show structure reminiscent of the unstable pulse trains.
XFROG is more sensitive than (third-order) PG FROG,
and therefore is most able to see the fluctuations. Both
of them underestimate the average FWHM length of the
trains, however, with PG FROG retrieving 23 δt and 22 δt,
and XFROG retrieving 21 δt and 120 δt. It is important to
note that the retrieved spectra, traces, and temporal inten-
sities all point to pulses more complicated than the simple
Gaussian stable component, and the error indicates failed
convergence.

Because the FROG algorithm has been demonstrated to
be quite robust [57], significant disagreement between mea-
sured and retrieved traces should generally be attributed to
instability or measurement error of some type, rather than
non-convergence, as is occasionally speculated. In particu-
lar, the blotchy, structured appearance of the retrieved PG
FROG and XFROG traces, contrasting with the smooth
measured traces, is unlikely to result from anything but
pulse-train instability. This effect has been encountered
previously in multi-shot XFROG measurements of super-
continuum [42], where it revealed the true unstable nature
of continuum when simple multi-shot spectral measure-
ments did not. It appears that over-determination in the
FROG trace is a significant advantage in the presence of
instability.

5. Conclusions

In conclusion, practitioners of ultrafast optics should re-
main cautious about the stability of their pulses and should
interpret their measurements accordingly. It should not be
taken as given that all modern passive mode-locking tech-
niques for bulk lasers always produce stable pulse trains.
And the burden of proof that a new design yields a stable
pulse train is, as always, on the researcher reporting it. Care
is especially necessary when characterizing white-light su-
percontinuum pulses and their possible compression. Pulse
break-up instabilities are common in white-light genera-
tion in microstructure fibers [42–44], filaments [58], and
also mode-locked fiber lasers [59, 60].

Quite generally, SPIDER does a very good job of mea-
suring the nonrandom component of the pulse train (the
coherent artifact) but is not able to discern instabilities. It
fails to distinguish a train of long, unstable pulses from a
train of short, stable pulses. In other words, SPIDER mea-
sures only the coherent artifact. If claims of stability or a
quantitative pulse length are to be made from a SPIDER
measurement, it should have fringe visibility very close to
100%. As this is quite difficult to achieve in practice, an ad-
ditional measurement of an autocorrelation or FROG trace
for the same pulse train [61] could help to yield a more
convincing safeguard against instability.

www.lpr-journal.org C© 2013 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



LASER & PHOTONICS
REVIEWS

8 M. Rhodes et al.: Pulse-shape instabilities and their measurement

On the other hand, FROG measurements alone directly
provide a convincing indication of stability when the mea-
sured and retrieved traces agree well. And conversely,
FROG indicates instabilities via disagreement and corre-
sponding excessively large FROG errors. In the latter case,
the retrieved pulse shape is a better representation of the
pulse shapes if obtained using PG FROG or XFROG than
with SHG FROG. Here, once again, it is important to under-
stand that pulse duration refers to the obtainable temporal
resolution, e.g., in pump-probe experiments.

Ultimately, neither SPIDER nor FROG (nor any other
method) is able to reproduce the complete picture of pulse-
shape instabilities in fluctuating pulse trains. Because pulse-
shape instabilities will suffice to exclude a given laser
source from almost any application, researchers should use
extreme caution with SPIDER measurements whose fringe
visibilities are less than 100% and FROG measurements
if disagreement occurs between measured and retrieved
traces. In such cases, instability should likely be reported,
and single-shot measurements should be considered.
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1. Appendix A: FROG errors

It has become traditional to use the so-called G
error–the rms difference between the measured and re-
trieved traces across the entire trace–as the measure for
how well the retrieved FROG trace matches the measured
trace. Given a measured, normalized trace IFROG(ωi , τ j )
and a retrieved trace I (k)

FROG(ωi , τ j ), the G error is given by:

G =
√√√√ 1

N 2

N∑
i, j=1

|IFROG(ωi , τ j ) − μI (k)
FROG(ωi , τ j )|2 (A.1)

where μ is chosen to minimize G. This error metric normal-
izes by the number of points, N2, and is appropriate for use
within the FROG algorithm, and also when additive noise
is the dominant source of noise in the trace, including the
trace’s edges. Because most FROG traces have more multi-
plicative noise than additive noise and hence large regions
of near-zero values in their outer regions, the value of the G
error that indicates good agreement varies with the size of
the trace. It has been suggested by Scott et al. [62] that, in
most cases, a better way to normalize the error for human
understanding would be to normalize by the energy in the
measured trace. This error, named G′, is given by:

G ′ =
√√√√

∑N
i, j=1 |IFROG(ωi , τ j ) − μI (k)

FROG(ωi , τ j )|2∑N
i, j=1 |IFROG(ωi , τ j )|2

(A.2)

Scott et al. found that less than 5% G′ error (or a G′
error approximately equal to the known multiplicative noise
in the measurement) was indicative of good agreement in
most cases, and the simple nonrandom retrievals included
in the top rows of Figs. 4 and 5 have well under 1% G′
error. Both errors are used in this paper, and FROG users
are encouraged to consider the more intuitive G′ error.
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