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Even though a general theory of first-order spatiotemporal couplings exists in the literature, it is often difficult to
visualize how these distortions affect laser pulses. In particular, it is difficult to show the spatiotemporal phase of
pulses in a meaningful way. Here, we propose a general solution to plotting the electric fields of pulses in three-
dimensional space that intuitively shows the effects of spatiotemporal phases. The temporal phase information is
color-coded using spectrograms and color response functions, and the beam is propagated to show the spatial
phase evolution. Using this plotting technique, we generate two- and three-dimensional images and movies that
show the effects of spatiotemporal couplings. © 2017 Optical Society of America
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1. INTRODUCTION

The general theory of first-order spatiotemporal distortions [1]
provides a complete and general framework for understanding
first-order beam distortions/couplings. It described the com-
plete and sometimes unintuitive relationships between well-
known spatiotemporal couplings like spatial chirp, angular
dispersion, and pulse-front tilt. It also drew attention to the
angular counterpart to pulse-front tilt, known as “time versus
angle” or the “ultrafast lighthouse effect,” as it was first named
in that work. Perhaps most importantly, it identified and de-
scribed four previously unconsidered imaginary coupling terms,
such as “wave-front rotation,” that necessarily accompany the
above-mentioned real coupling terms. These latter terms can be
quite unintuitive.

Unfortunately, despite various attempts to describe and plot
these new distortions, their effects are not always particularly
obvious. The authors of Ref. [1] attempted to show phase cou-
plings by plotting phase fronts in space versus time and fre-
quency. While these plots are certainly correct, they do not
impart much understanding about the appearance of such a
pulse or how it evolves as it propagates.

The theory of spatiotemporal distortions makes it clear that
the phase is just as important as the amplitude in describing
pulses. Therefore, plotting the spatiotemporal phase is neces-
sary to fully understand coupled fields. However, the largest
barrier to fully displaying electric fields in time and space is
a lack of intuitive methods for plotting their phase. Indeed,

the impact of phase is often difficult to appreciate even when
it is plotted in a straightforward way.

As a result, we here report visualization methods that rely on
indirect, but more intuitive, displays of the phase in order to
plot pulses. Specifically, we display the temporal phase by color-
coding the distribution of spectral energy over time and space,
and we display the spatial phase by propagating the electric field
and showing how the beam evolves in space and time. Showing
the impact of spatial and temporal phase on the pulse rather
than the numerical value of the phase is the key to intuitively
displaying the electric field. This approach is quite general and
can be applied to arbitrary pulses, provided that the electric
field is known at the input plane.

We believe that our work on pulse visualization provides an
unprecedented opportunity to study and understand spatio-
temporal couplings in ultrashort pulses, particularly for the
elusive phase couplings. Some aspects of these visualization
methods have been briefly described previously, as we have ap-
plied them to visualizing full spatiotemporal measurements of
interesting pulses [2,3]. Here, we will describe in detail our
most recent approach to plotting ultrashort pulses before apply-
ing these methods to displaying distorted pulses.

2. VISUALIZING PULSES

The goal of our pulse visualization technique is to be able to view
a pulse as it would appear naturally (if one could freeze time and
study it with a magnifying glass)—as a three-dimensional glob of
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light, with all of its spatial, temporal, and spectral structures
readily apparent. If the electric field E�x; y; t� is known in time
and space at some plane, z � z0, it is straightforward to plot
three-dimensional surfaces of constant intensity in x, y, and t
to display the spatiotemporal amplitude. In addition, we
color-code the spectral energy distribution to show the impact
of the temporal phase, and we propagate the pulse to show
the impact of the spatial phase. From the propagated field,
we can make a movie of the pulse evolving or simply show several
z planes in a still image. Figure 1 shows a fairly complex example
pulse with interesting temporal and spatial phases. This pulse has
a cubic spectral phase, resulting in the middle (green) frequencies
arriving first, followed by beating between concurrent large
(blue) and small (red) frequencies. As a result, the leading (right)
edge of the pulse is green, which fades first to white (indicating
the presence of the whole bandwidth) and then to purple.
Surfaces of constant intensity show that the satellites are much
weaker than the main pulse. This pulse is also diverging and ex-
periences a small amount of angular dispersion. The same pulse
plotted after 12 mm of free-space propagation is larger in space,
and the red and blue colors are beginning to spatially separate.
The angular dispersion also causes the pulse at z � 0 to be
slightly tilted. Using color to indicate the temporal phase and
propagation to indicate spatial phase allows a large amount of
information to be condensed into a single, informative plot.
The visualization code used to generate the plots in this paper
can be found online [4,5].

A. Plotting the Temporal Phase
It is fairly common for the temporal phase of pulses to be rep-
resented in color using its first derivative, the instantaneous fre-
quency. However, because the instantaneous frequency only
represents the average frequency at a given time, it cannot in-
dicate the bandwidth or spectral energy distribution of the
pulse. Interestingly, the pulse in Fig. 1 has a constant instanta-
neous frequency. This ambiguity is particularly troubling for
plotting spatiotemporal distortions, where the local bandwidth
and degree of color separation are very interesting. If there is no
distinction between having all frequencies present and only
having the center (average) frequency present, it will be very
difficult to interpret the plotted electric field.

To represent the temporal phase of pulses more meaning-
fully, we will rely on a more indirect representation of the
phase. The spectrogram (or sonogram), also known as the
short-time Fourier transform, has been used for many years,
specifically for its strength in showing the distribution of the
signal energy in time and frequency [6]. The first proponent
of the spectrogram referred to it as the “physical spectrum”
because it intuitively displays the time-frequency characteristics
of various signals [7]. A spectrogram is defined as

Sp�x; y; τ;ω� �
����
Z �∞

−∞
E�x; y; t�g�t − τ� exp�−iωt�dt

����2: (1)

As we will discuss in detail in the next section, a spectrogram
depends on the gate function g�t� used to construct it and is
not unique for a given signal E�t�. Because the spectrogram
describes the distribution of spectral energy over time, it is ideal
for this application.

Fig. 1. Diverging pulse with cubic spectral phase and angular
dispersion. The pulse is shown as it would appear if it could be photo-
graphed at two different z-positions while propagating to the right.
Surfaces of constant intensity are plotted every 10% of the peak in-
tensity at each z-distance. The cubic spectral phase causes the green
light to arrive first, followed by red and blue light. After propagating
∼12 mm, angular dispersion causes the red and blue light to spatially
separate, as indicated by a red tint near the top of the pulse and a blue
tint near the bottom. (top) Side view of the pulse, highlighting the
temporal structure. (middle) Angled view of the pulse, showing
three-dimensional capability (see Visualization 1). The electric field
is projected onto the bottom and back walls to show the x and y pro-
files. (bottom) Different angled view of the same pulse, emphasizing
the projections. Note that the apparent shape of the three-dimensional
pulse changes when viewed from a different angle.
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To color-code the spectrogram for display purposes, we de-
fine red, green, and blue response functions R�ω�, G�ω�, and
B�ω�, centered at the lower, middle, and higher frequencies,
respectively, in the pulse spectrum. We then use overlap inte-
grals to compute how much red, green, and blue energy is
present at each time and spatial position in the pulse:

R�x; y; τ� �
Z �∞

−∞
Sp�x; y; τ;ω�R�ω�dω; (2)

G�x; y; τ� �
Z �∞

−∞
Sp�x; y; τ;ω�G�ω�dω; (3)

B�x; y; τ� �
Z �∞

−∞
Sp�x; y; τ;ω�B�ω�dω: (4)

These functions are scaled afterwards such that each color func-
tion has the same total energy, normalizing the colors to the
pulse spectrum. As a result, the pulse will appear white when
all the frequencies in its spectrum are present. A highly satu-
rated color indicates a narrow local spectrum. These color func-
tions are ideal for showing how the spectral characteristics of
the pulse’s spatial profile change over time.

Without further adjustments, the brightness of the color also
indicates the pulse intensity. Intuitively, times and positions that
contain no pulse energy would be shown as black. While this is
useful for plotting two-dimensional cross sections [2], three-
dimensional plotting does not benefit from having low-intensity
areas appear nearly black. Because surfaces of constant intensity
already show the intensity distribution, the color functions only
need to show the local spectrum. The final step in determining
the plotted color is to boost the brightness of each voxel while
maintaining the ratio of red, green, and blue in that voxel. This
step allows us to plot three-dimensional surfaces at low intensities
without making the pulse appear overly dark.

1. Choosing Gates and Color Responses
The degree of color saturation in the plotted pulse is deter-
mined by two factors. The choice of the spectrogram gate pulse
plays a very large role. Shorter gate pulses generate spectrograms
with better temporal resolution but poorer spectral resolution.
The spectrogram signal at each delay is shorter in time and con-
sequently more broadband. Given the same spectral response
functions, a spectrogram created with a shorter gate will result
in lower color saturation and a whiter-looking pulse.
Conversely, choosing a longer gate pulse—implying poorer
temporal resolution in the spectrogram—results in better spec-
tral resolution and hence higher color saturation.

Generally speaking, the most informative results come from
achieving an optimal balance between the temporal and spectral
resolutions of the spectrogram. Often, the best compromise for
ultrashort pulses is to choose a gate pulse close to the same tem-
poral duration as the pulse itself [8]. However, in some cases, it
may be interesting to emphasize either good spectral resolution
or good temporal resolution. When the signal has variations in
instantaneous frequency that must be resolved, the optimal gate
length scales inversely with the rate of change of the instanta-
neous frequency [9]. In other words, the more complicated and
quickly varying the signal is in time, the shorter the gate pulse
must be to display these variations.

The shortest gate pulse (a temporal δ-function) provides the
best temporal resolution but always gives an infinitely wide
spectrum, resulting in a plot that shows no spectral energy var-
iations. The arrival time of spatial structures can be precisely
shown, but the pulse will appear white at all times. The longest
gate pulse (a continuous-wave signal) gives a perfect frequency
resolution, but all the arrival time information is lost. The spa-
tial distribution of the colors will be very well defined, but it
will not evolve in time. Both of these cases result in the loss of
information in the plots. It is always important to understand
that the choice of gate function has a strong impact on display-
ing frequency variations. Color-response functions cannot re-
cover frequency resolution that has been lost in making a
spectrogram with too short a temporal gate function.

While the width and placement of spectral response func-
tions certainly play a role in the color saturation of the plots, the
choice of these functions is somewhat less critical due to nor-
malization. There should be some overlap between the func-
tions chosen (see Fig. 2) so that there are no areas of zero
or near-zero response within the spectrum of the pulse.
Otherwise, there may be unnatural-looking divisions of color
in the plots or regions that look monochromatic despite actual
presence of many different frequencies. If there is a large over-
lap between the response functions, then the color differentia-
tion will be weak, and the pulse will simply appear white.
Similar to choosing a gate pulse, there are trade-offs and com-
promises in choosing spectral response functions depending on
the plotting purposes.

B. Plotting the Spatial Phase
In order to display the temporal phase, we explored its relation-
ship to the local spectrum of the pulse. Similarly, to plot the
spatial phase, we explore the Fourier conjugate domain. The
spatial frequencies kx and ky are equivalent to the off-axis
propagation vectors of the pulse. This strongly suggests that
the best way to understand the spatial phase is to show how

Fig. 2. Example choice of RGB response functions with respect to
the pulse spectrum (black). This shows the target global spectrum for
the coupled pulses plotted in this paper and the corresponding re-
sponse functions used. Note that RGB function widths and their sep-
arations determine the appropriate overlapping with the pulse
spectrum (and with each other).
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the pulse changes as it propagates. This requires computing the
free-space propagation of the electric field.

We use the angular-spectrum description of diffraction
[10,11], which has been shown to be equivalent to the first
Rayleigh–Sommerfeld solution [12]. After computing the
two-dimensional spatial Fourier transform of the original elec-
tric field, the field at any z plane is given simply by

E�kx;ky;ω;z��E�kx;ky;ω;0�exp
 
iz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

c2
−k2x −k2y

r !
; (5)

where kx and ky are the spatial frequencies or off-axis k-vectors
in the x and y dimensions. Using this model, propagation is
described as a simple transfer function. E�x; y; t; z� is easily de-
termined for plotting purposes by three inverse Fourier trans-
forms. We plot the field as a function of the local time around a
given value of z, so only one set of inverse transforms is required
to plot the field at each z plane.

Of course, when using angular spectrum propagation, care
must be taken to avoid aliasing the transfer function at large
values of k and z. In order to prevent aliasing from introducing
errors into the propagated field, we simply zero out the transfer
function for values of kx and ky above the Nyquist sampling
limit kmax (as suggested by Ref. [13]):

kmax �
�
λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2Δkz�2 � 1

p �
−1
: (6)

We also take the additional step of checking how many discrete
points lie between −kmax and kmax. If too few points are in the
non-zero region, the spatial grid is expanded to increase the
spatial frequency sampling. These steps are sufficient to avoid
distortions in the localized fields and short distances of interest
to us.

The propagated electric field can be plotted at several values
of z to show the effects of the spatial phase on the pulse evo-
lution. While plotting a few planes in z is often sufficient to
communicate the relevant phase information, we can also cre-
ate animations and movies showing the evolution of the pulse
shape through many planes. These movies may be necessary to
understand very complex beams.

1. Beam Shape and Time Scaling
There is a final, subtle issue in plotting these fields that deserves
some discussion. Ultrashort pulses are short in time and there-
fore are longitudinally small along their propagation direction.
For example, a 500 fs pulse is only 150 μm long along its propa-
gation direction. Because we often would like to show the evo-
lution of a pulse over tens of millimeters or more, the
longitudinal length of such a pulse must be increased so that
its temporal structure will be visible in the plot. In many cases,
the implicit local time axis can be scaled by any amount that
conveys the desired information. However, the topic of this
publication inspires an additional constraint. Because we are
interested in displaying tilted pulses and other spatiotemporal
distortions, we choose to scale time such that the angle of any
tilted pulses will be faithfully represented. In other words, we
require

tan α � cΔt real
Δxreal

� Δzplotted
Δxplotted

; (7)

where α is the tilt angle of the pulse. If we define scales sx and sz
for the x- and z-axes (in μm/pixel or similar units), then we can
relate the real and plotted quantities:

Δxreal � sxΔxplotted; (8)

γcΔt real � szΔzplotted: (9)

Here, γ is the dimensionless scale factor for time that we desire.
Plugging it into Eq. (7) and solving for γ, we find

γ � sz
sx
: (10)

Because the z-axis usually has a much larger range of values
than the x-axis, γ is often fairly large.

We use the same axis scales and ranges for all plots in this
paper, and the temporal scaling is therefore consistent as well.
While this type of scaling may not be possible or desirable for
all pulse length ranges and propagation distances, in this case,
we believe that it is a useful and informative choice.

3. REVIEW OF SPATIOTEMPORAL COUPLINGS

Among all spatiotemporal couplings, the most commonly ob-
served are the first-order spatiotemporal couplings [14–18].
These couplings can be described by a set of Gaussian equations
in four Fourier-transform-conjugate domains comprised of
pairs of dimensions [1,19]. In these equations, the coupling
coefficients are complex, with the real and imaginary parts hav-
ing different effects on the pulse. The real coefficients are called
amplitude coupling terms because they affect the energy distri-
bution, and the imaginary parts are called phase coupling terms
because they affect the phase fronts of the beam and the relative
phases of the frequency components.

Starting from the space and time dimensions (in the spatio-
temporal domain), the expression for a first-order coupled field is

E�x; t� ∝ expfQxxx2 � 2Qxtxt − Qtt t2g: (11)

For simplicity, we keep our discussion of couplings in the x
and t dimensions, so there is no need to explicitly write the
y-dependence. For this expression to describe a Gaussian pulse,
we require the real part of Qxx to be negative and the real part of
Qtt to be positive. Otherwise, the field will diverge in space or
time. The real part of Qxt is referred to as the pulse-front tilt
(PFT), and it can cause the energy on one side of the beam
to arrive earlier than on the other side. The imaginary part is
called the wave-front rotation, which describes how the direction
of the phase fronts changes with time in the pulse.

We can express the same electric field in terms of different
variables by taking the Fourier transform of one or both dimen-
sions. Because Gaussians Fourier-transform to Gaussians, we
will be able to write similar expressions in other domains.
Taking the Fourier transform of Eq. (11) with respect to time
leads us to the space-frequency (or spatiospectral) domain,
where the field is

E�x;ω� ∝ expfRxxx2 � 2Rxωxω − Rωωω
2g: (12)

Here, the real part of the coupling term Rxω is called the spatial
chirp, which separates the frequencies in the pulse spatially. The
imaginary part causes different frequencies in the pulse to have
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differently tilted phase fronts, an effect called wave-front tilt
dispersion.

If we instead take one Fourier transform with respect to
space instead of time, we obtain an expression in terms of time
and spatial frequency. The spatial frequency k (also known as
the off-axis propagation vector kx) is related to the spatial shape
of the pulse and to the phase fronts which determine the propa-
gation direction. The field in the k − t domain is then given by

E�k; t� ∝ expfPkkk2 � 2Pktkt − Ptt t2g: (13)

The real part of Pkt is called time versus angle, or the ultrafast
lighthouse effect. It causes the early parts of the pulse to propa-
gate in a different direction from the later parts. The imaginary
part of Pkt , referred to as the angular temporal chirp, is some-
what less intuitive. It means that different propagation direc-
tions have different relative phases as time evolves.

The fourth domain is the frequency and spatial frequency
domain. In this domain, the electric field is

E�k;ω� ∝ expfSkkk2 � 2Skωkω − Sωωω2g: (14)

The amplitude coupling between the frequency and spatial fre-
quency is angular dispersion, a well-known effect produced by
prisms and other optics. Different frequencies propagate in dif-
ferent directions. The phase coupling term, called the angular
spectral chirp, is less well known. This term causes different
propagation directions to gain different relative phases for dif-
ferent frequencies.

Since all of these domains are inter-related by Fourier trans-
forms, a coupling in any of these domains means that there are
related couplings in other domains. Using simulations and
pulse visualization, we will explore how each of these real
and imaginary couplings affect the appearance of the pulse.

4. SIMULATION DETAILS

All simulated pulses are based on the same Gaussian pulse in
time and space. This pulse has a full width at half-maximum
(FWHM) temporal length of 64 fs and an FWHM beam width
of 94 μm [see Fig 3(a)]. Its spectrum is centered at 800 nm.
A gate pulse with a temporal FWHM length of 67 fs is used to
generate the spectrograms used in coloring the plots. To show
how the couplings interact with spectral chirp, 1000 fs2 of
chirp is added in some cases. To show how the couplings
interact with spatial phase, a radius of curvature of 15 mm
(focusing) is added in some cases. Figure 3(b) shows both chirp
and spatial phase added to the standard pulse. The intensity

profile and phase parameters are translated into each domain,
and Eqs. (11)–(14) are used to define the coupled electric fields.

We introduce spatiotemporal couplings that are normalized
to the pulse parameters. As in Ref. [1], we define the amplitude
couplings in the form

RefRxωg � ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−RefRxxgRefRωωg

p
; (15)

where ρ is a constant that determines how strong the coupling
is. For valid electric fields, ρ is between −1 and 1. We use
ρ � 0.9 for the real couplings plotted in this paper.

Curiously, there are no such rules for the strength of imagi-
nary couplings. Attempting to derive restrictions on imaginary
couplings based on their relations to real couplings shows that
any value for an imaginary coupling will produce real couplings
with values of ρ between −1 and 1 (see Appendix A). The re-
lationships between couplings in adjacent domains (separated
by one Fourier transform) follow the general form [1]

Qxt �
i
2

Rxω

Rωω
: (16)

Because of this, we choose the imaginary couplings to have the
form

ImfRxωg � 2�0.9�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−RefRxxgRefRωωg

p
: (17)

This choice produces imaginary couplings with similar effects
to real couplings in many cases.

As discussed in Ref. [1], introducing real couplings causes
global pulse characteristics to differ from local ones. For exam-
ple, introducing an Rxω (spatial chirp) term causes the global
bandwidth to be larger than the local bandwidth and the global
beam width to be larger than the local beam width. The rela-
tionship between the local bandwidth ΔωL and the global
bandwidth ΔωG is

ΔωL � ΔωG

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ2

p
: (18)

Interestingly, it is the local bandwidth that is directly related to
the spectral profile in the pulse expression:

ΔωL � 1∕
�
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RefRωωg

p �
: (19)

This means that when introducing spatial chirp into a pulse
equation, the overall bandwidth of the pulse will become larger
if the local bandwidth (the Rωω term) remains the same. While
this makes sense from a mathematical perspective, it is at odds
with our physical capabilities in manipulating ultrashort pulses.
Because only nonlinear effects can introduce new frequencies
into a pulse, we choose to hold the global bandwidth constant
when introducing couplings. This means reducing the local
bandwidth when adding couplings in the frequency domain,
instead of expanding the global bandwidth. Consequently,
Rωω and Sωω must change when real couplings are added to
the pulse. When considering real couplings in the time domain,
the same physically motivated constraints produce opposite
effects. Holding the bandwidth of a pulse constant means that
the local pulse duration should remain the same, because intro-
ducing shorter temporal features increases the bandwidth.
This means that Qtt and Ptt remain the same when adding
real couplings, and the global pulse duration increases. For

Fig. 3. (a) Collimated, unchirped beam with no distortions.
(b) Focusing, chirped beam with no spatiotemporal distortions.
The pulse is longer in time as a result of the chirp.

3028 Vol. 56, No. 11 / April 10 2017 / Applied Optics Research Article



further visual consistency, similar adjustments are applied in the
x domain to keep the global beam width constant.

In order to make the effects of the spatiotemporal distortions
as clear as possible, we consider only one transverse coordinate,
x or kx. The y or ky dependence is kept as a simple Gaussian.
We choose to plot a two-dimensional side view of the pulses to
most clearly show the relationship between the spatial and tem-
poral structures. While these pulses can easily be shown in three
dimensions using our visualization method, the side view is
more helpful for seeing the effects we are attempting to study.

We begin our discussion of spatiotemporal couplings with the
x–ω domain, where the simulation results are the most intuitive.
From there, we will explore similarities and differences
between the spatiospectral domain couplings and couplings in
other domains.

5. Rxω: SPATIAL CHIRP AND WAVE-FRONT TILT
DISPERSION

Figure 4(a) shows a spatially chirped pulse. Comparing this
pulse to Fig. 3(a), we see that spatially separating colors to this
degree significantly increases the temporal pulse length. A sec-
ond interesting difference (that we will see consistently for all
coupled beams) is that the spatially chirped pulse does not stay
collimated like the undistorted beam in Fig. 3(a) does. As the
pulse propagates, the local spot size of each color expands, re-
sulting in less color separation and a shortening of the local
pulse duration. Group-delay arguments predict the emergence
of pulse-front tilt as the pulse propagates.

Adding spectral chirp [see Fig. 4(b)] has a predictable effect
on the pulse, causing the red side of the beam to arrive earlier
and the blue side to arrive later. Interestingly, the frequencies
appear to be separated along a diagonal and not along strict
horizontal lines, as one might expect from Ref. [20]. This effect
can be understood by realizing that each horizontal slice has a
range of frequencies present, and the chirp causes the lower
frequencies in that range to arrive first.

The effect of wave-front tilt dispersion on the beam is very
different from spatial chirp [see Fig. 5(a)]. A phase coupling
between x and ω implies that the tilt of the phase fronts is dif-
ferent for each frequency. Because light propagates in a direc-
tion perpendicular to its phase fronts, the varying tilt for each
frequency means that different frequencies propagate in differ-
ent directions. This is very similar to the well-known effect of
angular dispersion. Accordingly, it comes as no surprise that
wave-front tilt dispersion appears very similar to what we would
expect for angular dispersion, including introducing negative

group-delay dispersion in the pulse. In fact, we will see that
for collimated beams with no chirp, the eight real and imagi-
nary distortions can be grouped into two categories with nearly
identical effects. One category contains pulse-front tilt, wave-
front tilt dispersion, angular dispersion, and angular temporal
chirp. The second category contains spatial chirp, wave-front
rotation, time versus angle, and angular spectral chirp.
These relationships may be inferred from the tables and calcu-
lations in Ref. [1], but they become abundantly clear when
plotting the electric fields.

Adding spectral chirp to the pulse results in an identical tem-
poral chirp across the whole beam [see Fig. 5(b)]. The applied
chirp of 1000 fs2 very nearly cancels out the negative group-
delay dispersion generated by the coupling, and the dispersed
colors consequently have a very similar arrival time after 12 mm
of propagation.

6. Qxt : PULSE-FRONT TILT AND WAVE-FRONT
ROTATION

Since the x–t domain is related to the x–ω domain by a single
temporal Fourier transform, there will be many similarities
between couplings in the two domains. The mathematical re-
lationship between the couplings is

Qxt �
i
2

Rxω

Rωω
; Rxω � −

i
2

Qxt

Qtt
: (20)

For pulses with no spectral or temporal chirp, Rωω and Qtt are
real, and a real coupling in one domain corresponds to an
imaginary coupling in the other. However, we see that intro-
ducing spectral or temporal chirp will break the symmetry be-
tween these two domains.

As expected, a beam with pulse-front tilt only [see Fig. 6(a)]
is extremely similar to the plot in Fig. 5(a) of wave-front tilt
dispersion. The most noticeable difference is that the pulse
shape appears to be flipped about the x-axis, indicating that
positive pulse-front tilt corresponds to negative wave-front tilt
dispersion. Introducing chirp has a particularly dramatic effect
that differentiates this pulse significantly from the pulse with
wave-front tilt dispersion and spectral chirp. The temporal
chirp causes the pulse to be quite long in time. The highly
saturated colors in the z � 0 pulse indicate that the bandwidth
in each location is small.

Despite introducing the same amount of chirp as in Figs. 4(b)
and 5(b), the pulse in Fig. 6(b) has much greater temporal sep-
aration between colors. This can be explained by considering

Fig. 4. Spatial chirp. (a) Spatial chirp in a collimated pulse with no
spectral chirp (see Visualization 2). (b) Spatial chirp in a collimated
pulse with spectral chirp.

Fig. 5. Wave-front tilt dispersion. (a) Wave-front tilt dispersion in a
collimated pulse with no spectral chirp. (b) Wave-front tilt dispersion
in a collimated, chirped pulse.
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local and global times. Looking at the algebraic expression for
this pulse,

E�x; t� ∝ exp

�
−

x2

4Δx2L
� 2ρxt

4ΔxLΔtL
−

t2

4Δt2L
� iβt2

�
; (21)

we see that we can rewrite the amplitude coupling term as an
x-dependent modification of the local arrival time of the tempo-
ral pulse envelope:

E�x; t� ∝ exp

�
−
�1 − ρ2�x2
4Δx2L

−
1

4Δt2L

�
t − ρx

ΔtL
ΔxL

	
2

� iβt2
�
:

(22)

However, the chirp term in this expression does not depend on x
at all. As a result, the chirp uses a global pulse time, not a local
one. Because the global pulse time has a larger range than the
local pulse time, the temporal phase can have a large range of
values. In fact, adding pulse-front tilt and temporal chirp to
the field expression in this way actually increases the pulse band-
width. The electric field can be modified so that the chirp also
uses an x-dependent local time, resulting in a pulse that is nearly
identical to Fig. 5(b). However, it is important to note that using
a local chirp introduces an imaginary component in theQxt cou-
pling term. The modified pulse would have both pulse-front tilt
and wave-front rotation.

Another interesting aspect of Fig. 6(b) is the similarity
between the z � 0 pulse in this plot and the z � 0 pulse in
Fig. 4(b) of the spatial chirp with the spectral chirp. The pulse
with spatial and spectral chirps appears to have some pulse-
front tilt. Akturk et al. [1] derived an expression for the
pulse-front tilt in terms of the spatiospectral coupling terms
(see Appendix B):

RefQxtg
RefQttg

� −2 ImfRxωg � 2 ImfRωωg
RefRxωg
RefRωωg

: (23)

Here, the pulse-front tilt is normalized by the local pulse du-
ration, and the spatial chirp is normalized by the local band-
width. Accordingly, one would say that pulse-front tilt is caused
by wave-front tilt dispersion and also by the combination of the
spectral chirp and spatial chirp. For positively chirped pulses,
the imaginary part of Rωω is positive, and so pulse-front tilt and
spatial chirp have the same sign, while pulse-front tilt and wave-
front tilt dispersion have opposite signs. The unchirped pulse
with pulse-front tilt [Fig. 6(a)] has all of its tilt generated by
wave-front tilt dispersion. The opposite signs are evident in
the opposite tilt angles. The pulse with spatial and spectral

chirp [Fig. 4(b)] has no wave-front tilt dispersion, and all of
its tilt therefore comes from the second term in Eq. (23).
The pulse in Fig. 6(b) experiences pulse-front tilt generated
by both effects. The lack of wave-front tilt dispersion in the
pulse with spatial and spectral chirp [Fig. 4(b)] explains why
this pulse looks very different from the pulse with pulse-front
tilt and temporal chirp [Fig. 6(b)] after the z � 0 plane. The
divergent evolution of these pulses also underscores the need to
plot the pulse evolution as part of understanding the elec-
tric field.

The unusual appearance of the temporally chirped pulse
with pulse-front tilt has interesting implications for experi-
ments involving pulse-front tilt. One common method of
introducing pulse-front tilt is to interact with a diffraction gra-
ting at a non-zero incidence angle [21–23]. A chirped pulse
diffracting off a grating would retain the same temporal profile
for all transverse positions. The resulting beam should therefore
look like the wave-front tilt dispersion in Fig. 5(b), not the
pulse-front tilt in Fig. 6(b). The plots therefore imply that a
diffraction grating primarily introduces wave-front tilt
dispersion, and a chirped pulse interacting with a grating there-
fore experiences wave-front rotation as well as pulse-front tilt.
These plots allow us to cultivate a much better understanding
of how to describe real-world couplings using equations.

Another experimental insight that can be gained from Fig. 6
relates to the pulse tilt angle. The pulse-front tilt angle is the
natural way to quantify the pulse-front tilt in many situations.
One would expect the tilt angle to be essentially equivalent to
the strength of the coupling between x and t . However, both
pulses in Fig. 6 have the same coupling strength, and the
chirped pulse is tilted at a larger angle than the unchirped pulse.
The tilt angle therefore depends on more than just the coupling
strength, and it would be useful to have an expression relating
the pulse-front tilt angle to the parameters used in the Gaussian
beam equations. If we define the pulse-front tilt angle α as

tan α � Δz
Δx

; (24)

then it can be shown that the tilt angle depends on the Gaussian
pulse parameters as

tan α � c
RefQxtg
RefQttg

� cρΔtL
ΔxL

� cρΔtG
ΔxG

: (25)

It is interesting to note that the tilt angle depends on both the
coupling strength ρ and the ratio of the pulse duration to the
beam size. Mathematically, as the local pulse duration ΔtL in-
creases due to chirp, the pulse-front tilt angle also increases. In
contrast, in the experimental grating geometry often used to
create pulse-front tilt, the tilt angle of the pulse bouncing
off of the grating depends only on the angle of incidence onto
the grating. Physically, the tilt angle remains constant regardless
of the pulse length or chirp. This means that mathematically
describing pulse-front tilt generated by a grating requires
changing the coupling strength as the pulse length changes,
even though the experimental apparatus is fixed. Such details
become much more apparent when the theoretical and exper-
imental spatiotemporal fields can be directly plotted.

The effect of wave-front rotation on a collimated, unchirped
pulse is shown in Fig. 7(a). As anticipated, the pulse is nearly

Fig. 6. Pulse-front tilt. (a) Pulse-front tilt in a collimated pulse with
no temporal chirp (see Visualization 3). (b) Pulse-front tilt in a colli-
mated pulse with temporal chirp.
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identical to a pulse with spatial chirp. Unlike the spatially
chirped pulse, however, this pulse does not gain pulse-front tilt
when temporal chirp is added. Wave-front rotation is a phase
coupling, and it therefore cannot change the spatial or temporal
intensity profile of the pulse, even in the presence of tempo-
ral chirp.

The addition of temporal chirp means that the pulse in
Fig. 7(b) has both spatial chirp and wave-front tilt dispersion.
The distribution of colors in this plot becomes much more in-
tuitive when considering the sum of the color profiles for spec-
trally chirped pulses with spatial chirp and wave-front tilt
dispersion. Similar to the pulse with spectral chirp and
wave-front tilt dispersion, this pulse has a stronger temporal
separation of colors than the pulse with spectral chirp and spa-
tial chirp. As the beam expands due to propagation, the spatial
chirp becomes more pronounced.

Plots of pulse-front tilt and wave-front rotation show that
introducing temporal phase into the field expressions creates
pulses that have a mixture of spatial chirp and wave-front tilt
dispersion. We will see that this rule of thumb can be applied
generally when adding phase in the dimension not shared by
the two domains.

7. Skω: ANGULAR DISPERSION AND ANGULAR
SPECTRAL CHIRP

The k–ω domain is related to the x–ω domain by a single
spatial Fourier transform, and their couplings are therefore re-
lated by

Skω � i
2

Rxω

Rxx
; Rxω � −

i
2

Skω
Skk

: (26)

When the pulse is collimated, Rxx and Skk are real. In this case,
the angular dispersion is proportional to the wave-front tilt
dispersion, and the angular spectral chirp is proportional to
the spatial chirp (see Fig. 8). In these cases, the effects of angular
dispersion and angular spectral chirp are identical to effects we
have already considered. Positive angular spectral chirp corre-
sponds to negative spatial chirp, but the two effects are other-
wise the same.

The previous section explored symmetry breaking between
the x–ω and x–t domains due to chirp. The symmetry between
x–ω and k–ω is broken by spatial phase, including focusing or
defocusing of the beam. For example, wave-front tilt dispersion
and angular dispersion have the same effect on collimated
pulses even in the presence of spectral chirp. If there is no

spatial phase, a pulse with only angular dispersion (and no
angular spectral chirp) has only wave-front tilt dispersion
and no spatial chirp. However, adding spatial phase to the pulse
expressions creates very different electric fields (see Fig. 9).
While the pulse with wave-front tilt dispersion focuses some-
what as expected, the pulse with angular dispersion becomes
very strongly dispersed in the transverse dimension. Adding
spatial phase to a pulse with angular dispersion creates a beam
that has both wave-front tilt dispersion and spatial chirp.

Similarly to our discussion of pulse-front tilt, we can derive
an expression for the angular dispersion in terms of the x–ω
couplings:

RefSkωg
RefSkkg

� −2ImfRxωg � 2ImfRxxg
RefRxωg
RefRxxg

: (27)

Here, the angular dispersion is normalized by the beam diver-
gence, and the spatial chirp is normalized by the beam size.
Angular dispersion can therefore be caused by wave-front tilt
dispersion and by the combination of wave-front curvature
and spatial chirp. The real parts of Skk and Rxx are always neg-
ative, and the wave-front curvature is negative for focusing
beams, so the angular dispersion and wave-front tilt dispersion
have the same sign and spatial chirp has an opposite sign.
Figure 5(a) [or equivalently, Fig. 8(a)] shows the wave-front tilt
dispersion contribution to the angular dispersion. Figure 10(a)
shows the other contribution: a focusing pulse with spatial
chirp. The opposite signs of angular dispersion and spatial chirp
in Eq. (27) are evident in the opposite color gradients in
Figs. 9(b) and 10(a). Because wave-front tilt dispersion and spa-
tial chirp belong to the same domain, the pulse with wave-front
tilt dispersion has zero spatial chirp and vice versa. The focusing

Fig. 7. Wave-front rotation (a) Wave-front rotation in a collimated
beam with no temporal chirp. (b) Wave-front rotation in a collimated
beam with temporal chirp.

Fig. 8. k–ω domain couplings: angular dispersion and angular spec-
tral chirp. (a) Angular dispersion in a collimated pulse with no spectral
chirp. (b) Angular spectral chirp in a collimated pulse with no spectral
chirp.

Fig. 9. Differences between wave-front tilt dispersion and angular
dispersion. (a) Wave-front tilt dispersion in a focusing pulse with no
chirp. (b) Angular dispersion in a focusing pulse with no chirp (see
Visualization 4).
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pulse with angular dispersion [Fig. 9(b)] includes contributions
to the total angular dispersion from both effects.

The large beam width of the focusing pulse with angular
dispersion highlights a parallel with our consideration of
pulse-front tilt. The combination of temporal phase and
pulse-front tilt resulted in a pulse that was long in time and
had a broader bandwidth [Fig. 6(b)]. In this case, adding spatial
phase in combination with angular dispersion results in a pulse
with a large convergence angle and a larger beam size. Although
we attempted to keep the beam size consistent between all
pulses considered by maintaining the same local beam diver-
gence, we were not successful for pulses with spatial phase.
This highlights the complicated relationships between beam
parameters in the presence of spatiotemporal couplings and
spatial and temporal phases.

Figure 10 shows the equivalent symmetry breaking for spatial
chirp and angular spectral chirp. Without spatial phase, these two
terms are equivalent (with a relative minus sign) and have iden-
tical effects on a pulse. Adding spatial phase differentiates them,
although to a less dramatic degree than the previous case. The
pulse with spatial chirp focuses more cleanly, while the pulse with
angular spectral chirp still has significant color dispersion after
12 mm of propagation. This makes sense, because focusing
wave-front tilt dispersion creates significant color separation
[see Fig. 9(a)], and a focusing pulse with angular spectral chirp
has both a spatial chirp and wave-front tilt dispersion.

We should explicitly note that spatial phase breaks the sym-
metry between the x domains and the k domains. This means
that a focusing beam with pulse-front tilt looks just like a focus-
ing beam with wave-front tilt dispersion (besides the relative
minus sign), because these are x-domain couplings with similar
effects. A focusing beam with wave-front rotation is the same as a
focusing beam with spatial chirp for the same reasons. Likewise,
the spectral phase differentiates the ω domains and the t do-
mains, meaning that angular dispersion and angular spectral
chirp respond to spectral phase in the same way as the wave-front
tilt dispersion and spatial chirp, respectively. The reader is en-
couraged to refer to similar plots when a specific combination
of coupling and phase has been omitted for brevity.

8. Pkt : TIME VERSUS ANGLE AND ANGULAR
TEMPORAL CHIRP

The k–t domain is two Fourier transforms away from the x–ω
domain, and so the relationship between the couplings in these
domains is complicated:

Pkt �
1

4

Rxω

RxxRωω � R2
xω

: (28)

However, we can leverage our understanding of other domains
to predict the behavior of the k–t couplings.

For collimated beams with no chirp, time versus angle is
identical to spatial chirp, angular spectral chirp (with a sign
flip), and wave-front rotation. When focusing, time versus
angle is best expressed as a combination of wave-front rotation
and pulse-front tilt:

RefPktg
RefPkkg

� −2 ImfQxtg � 2 ImfQxxg
RefQxtg
RefQxxg

: (29)

Because the real parts of Pkk and Qxx are negative, and the
wave-front curvature ImfQxxg is negative for focusing beams,
time versus angle has the same sign as wave-front rotation and
the opposite sign from pulse-front tilt. As with angular
dispersion, the beam width becomes very large when spatial
phase is added [see Fig. 11(a)]. The focusing term is large
enough that the resulting pulse more closely resembles focusing
pulse-front tilt [see Fig. 9(a) of focusing wave-front tilt
dispersion] than wave-front rotation [Fig. 7(a)].

When adding spectral phase to a pulse with time versus
angle [see Fig. 11(b)], the pulse behaves similarly to wave-front
rotation [see Fig. 7(b)]. Alternatively, the field can be viewed as
the combination of angular spectral chirp and angular
dispersion:

RefPktg
RefPttg

� −2 ImfSkωg � 2 ImfSωωg
RefSkωg
RefSωωg

: (30)

For positively chirped pulses, the imaginary part of Sωω is pos-
itive, meaning that time versus angle has the same sign as
angular dispersion and the opposite sign from the angular spec-
tral chirp. The second term, angular dispersion with spectral
phase, is identical to wave-front tilt dispersion with spectral
phase [Fig. 5(b)]. Both angular dispersion and angular spectral
chirp appear to have a sizeable contribution to the pulse shape.

Figure 12 shows pulses with angular temporal chirp.
Interestingly, the focusing pulse [Fig 12(a)] is not very different
at all from a collimated beam [see Fig. 8(a) of angular
dispersion]. Much like angular spectral chirp, adding spatial
phase to this pulse has very little effect. It is not clear why
the spatial phase has such a dramatic effect on the pulse shape
for the amplitude couplings [see Fig. 8(b) of angular dispersion

Fig. 10. Differences between spatial chirp and angular spectral
chirp. (a) Spatial chirp in a focusing pulse with no spectral chirp.
(b) Angular spectral chirp in a focusing pulse with no spectral chirp.

Fig. 11. Pulses with time versus angle, also known as the ultrafast
lighthouse effect. (a) Time versus angle in a focusing beam with no
temporal chirp (see Visualization 5). (b) Time versus angle in a colli-
mated beam with temporal chirp.
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and Fig. 11(a) of time versus angle] while having such a small
impact on the phase couplings.

The combination of angular temporal chirp with temporal
chirp is shown in Fig. 12(b). As we should expect, this pulse is
very similar to the chirped pulse with pulse-front tilt [Fig. 6(b)],
although the angle and colors are flipped spatially.

9. CONCLUSIONS

In general, it becomes clear that first-order phase couplings can
be understood in terms of how they relate to amplitude cou-
plings. Once one understands when two closely related cou-
plings behave similarly and when they differ, it becomes
simple to predict how a given phase coupling will affect an
ultrashort pulse. In addition, visualizing a coupling as the
sum of couplings in other domains is useful and informative.

We conclude that the described method for displaying the
intensity and phase of ultrashort pulses should be extremely help-
ful in displaying and understanding both amplitude and phase
variations. The ability to display the electric field of any pulse is
an important step forward in our ability to understand and visu-
alize distorted beams. This plotting technique is very general and
can be applied to any localized electric fields of interest.

APPENDIX A: PROOF THAT IMAGINARY
COUPLING TERMS CAN TAKE ANY VALUE

Assume that a pulse in the x–t domain has wave-front rotation
and no pulse-front tilt (RefQxtg � 0). We will also assume that
the pulse is collimated and not chirped (ImfQxxg �
ImfQttg � 0) (for simplicity only; the proof still holds for
pulses with spatial and/or spectral phase). The same pulse con-
sidered in the x–ω domain has spatial chirp. The x–ω coeffi-
cients can be expressed in terms of the x–t coefficients [1]:

Rxx � Qxx �
Q2

xt

Qtt
� RefQxxg �

−ImfQxtg2
RefQttg

; (A1)

Rxω � −
i
2

Qxt

Qtt
� ImfQxtg

2RefQttg
; (A2)

Rωω � 1

4Qtt
� 1

4RefQttg
: (A3)

The coupling strength ρ of the spatial chirp must be between
−1 and 1 for valid electric fields:

ρ2 � RefRxωg2
−RefRxxgRefRωωg

< 1: (A4)

By substituting Eqs. (A1)–(A3) into Eq. (A4), we obtain

ρ2 �
1
4
ImfQxt g2
RefQtt g2

−
�
RefQxxg − ImfQxt g2

RefQtt g
�

1
4RefQtt g

�
ImfQxt g2
RefQtt g

−RefQxxg � ImfQxt g2
RefQtt g

:

(A5)

Keeping in mind that the real part of Qxx is always negative
(and the real part of Qtt is always positive), it becomes clear
that the expression in Eq. (A5) will always be less than one,
regardless of the value of ImfQxtg.

APPENDIX B: DERIVATION OF EQ. (23)

Using Eq. (A2), we can write the x − t coupling term as

Qxt � 2i RxωQtt : (B1)

The pulse-front tilt is the real part of the coupling term,
given by

RefQxtg � −2 ImfRxωgRefQttg − 2RefRxωgImfQttg: (B2)

Using Eq. (A3), we find that

ImfRωωg
RefRωωg

� −
ImfQttg
RefQttg

: (B3)

Using this relationship, we then write

RefQxtg
RefQttg

� −2 ImfRxωg � RefRxωg
ImfRωωg
RefRωωg

: (B4)

Funding. National Science Foundation (NSF) (1307817);
Georgia Research Alliance (GRA)

Acknowledgment. This work was performed in part
under the auspices of the U.S. Department of Energy by
the Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344.

REFERENCES
1. S. Akturk, X. Gu, P. Gabolde, and R. Trebino, “The general theory of

first-order spatio-temporal distortions of Gaussian pulses and beams,”
Opt. Express 13, 8642–8661 (2005).

2. Z. Guang, M. Rhodes, M. Davis, and R. Trebino, “Complete charac-
terization of a spatiotemporally complex pulse by an improved
single-frame pulse-measurement technique,” J. Opt. Soc. Am. B
31, 2736–2743 (2014).

3. Z. Guang, M. Rhodes, and R. Trebino, “Measurement of the ultrafast
lighthouse effect using a complete spatiotemporal pulse-characterization
technique,” J. Opt. Soc. Am. B 33, 1955–1962 (2016).

4. M. Rhodes, “3D laser pulse visualization,” https://doi.org/10.6084/m9.
figshare.4719193.v1.

5. Trebino Group Website, http://frog.gatech.edu/code.html.
6. W. Koenig, H. Dunn, and L. Lacy, “The sound spectrograph,”

J. Acoust. Soc. Am. 18, 19–49 (1946).
7. W. D. Mark, “Spectral analysis of the convolution and filtering of non-

stationary stochastic processes,” J. Sound Vib. 11, 19–63 (1970).
8. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of

Ultrashort Laser Pulses (Springer, 2012).
9. L. Cohen, Time–Frequency Analysis (Prentice-Hall, 1995).
10. J. Ratcliffe, “Some aspects of diffraction theory and their application to

the ionosphere,” Rep. Prog. Phys. 19, 188–267 (1956).

Fig. 12. Pulses with angular temporal chirp. (a) Angular temporal
chirp in a focusing pulse with no temporal chirp. (b) Angular temporal
chirp in a collimated pulse with temporal chirp.

Research Article Vol. 56, No. 11 / April 10 2017 / Applied Optics 3033

https://doi.org/10.6084/m9.figshare.4719193.v1
https://doi.org/10.6084/m9.figshare.4719193.v1
https://doi.org/10.6084/m9.figshare.4719193.v1
https://doi.org/10.6084/m9.figshare.4719193.v1
https://doi.org/10.6084/m9.figshare.4719193.v1
https://doi.org/10.6084/m9.figshare.4719193.v1
https://doi.org/10.6084/m9.figshare.4719193.v1
http://frog.gatech.edu/code.html
http://frog.gatech.edu/code.html
http://frog.gatech.edu/code.html
http://frog.gatech.edu/code.html


11. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company,
2005).

12. G. C. Sherman, “Application of the convolution theorem to Rayleigh’s
integral formulas,” J. Opt. Soc. Am 57, 546–547 (1967).

13. K. Matsushima and T. Shimobaba, “Band-limited angular spectrum
method for numerical simulation of free-space propagation in far
and near fields,” Opt. Express 17, 19662–19673 (2009).

14. H. Vincenti and F. Quéré, “Attosecond lighthouses: How to use spa-
tiotemporally coupled light fields to generate isolated attosecond
pulses,” Phys. Rev. Lett. 108, 113904 (2012).

15. J. A. Wheeler, A. Borot, S. Monchocé, H. Vincenti, A. Ricci, A.
Malvache, R. Lopez-Martens, and F. Quéré, “Attosecond lighthouses
from plasma mirrors,” Nat. Photonics 6, 829–833 (2012).

16. H. Vincenti, A. Borot, T. Hammond, K. T. Kim, J. Wheeler, C. Zhang, T.
Ruchon, T. Auguste, J. Hergott, andD. Villeneuve, “Applications of ultrafast
wavefront rotation in highly nonlinear optics,” J. Phys. B 47, 124004 (2014).

17. A. Zaukevičius, V. Jukna, R. Antipenkov, V. Martinėnaitė, A.
Varanavičius, A. P. Piskarskas, and G. Valiulis, “Manifestation of
spatial chirp in femtosecond noncollinear optical parametric

chirped-pulse amplifier,” J. Opt. Soc. Am. B 28, 2902–2908
(2011).

18. G. Zhu, J. Van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous
spatial and temporal focusing of femtosecond pulses,” Opt. Express
13, 2153–2159 (2005).

19. S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal
couplings in ultrashort laser pulses,” J. Opt. 12, 093001 (2010).

20. S. Akturk, X. Gu, E. Zeek, and R. Trebino, “Pulse-front tilt caused by
spatial and temporal chirp,” Opt. Express 12, 4399–4410 (2004).

21. T. C. Wong, M. Rhodes, and R. Trebino, “Single-shot measurement of
the complete temporal intensity and phase of supercontinuum,”
Optica 1, 119–124 (2014).

22. T. C. Wong and R. Trebino, “Single-frame measurement of complex
laser pulses tens of picoseconds long using pulse-front tilt in cross-
correlation frequency-resolved optical gating,” J. Opt. Soc. Am. B
30, 2781–2786 (2013).

23. R. Wyatt and E. E. Marinero, “Versatile single-shot background-free
pulse duration measurement technique, for pulses of subnanosecond
to picosecond duration,” Appl. Phys. 25, 297–301 (1981).

3034 Vol. 56, No. 11 / April 10 2017 / Applied Optics Research Article


	XML ID funding

