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We recently introduced a new technique, frequency-resolved optical gating (FROG), for directly determining the
full intensity I(¥) and phase ¢(¢) of a single femtosecond pulse. By using almost any instantaneous nonlinear-
optical interaction of two replicas of the ultrashort pulse to be measured, FROG involves measuring the spec-
trum of the signal pulse as a function of the delay between the replicas. The resulting trace of intensity versus
frequency and delay yields an intuitive display of the pulse that is similar to the pulse spectrogram, except that
the gate is a function of the pulse to be measured. The problem of inverting the FROG trace to obtain the pulse
intensity and phase can also be considered a complex two-dimensional phase-retrieval problem. As a result,
the FROG trace yields, in principle, an essentially unique pulse intensity and phase. We show that this is also
the case in practice. We present an iterative-Fourier-transform algorithm for inverting the FROG trace. The
algorithm is unusual in its use of a novel constraint: the mathematical form of the signal field. Without the
use of a support constraint, the algorithm performs quite well in practice, even for pulses with serious phase
distortions and for experimental data with noise, although it occasionally stagnates when pulses with large in-

tensity fluctuations are used.

1. INTRODUCTION

In the past 25 years the science and technology for the
creation and use of ultrashort laser pulses have progressed
tremendously. It is now possible to create laser pulses as
short as a few femtoseconds in length,! and such pulses
have found a wide range of applications.”® Unfortunately,
the means for measuring these pulses has not progressed
so rapidly. What is sought is a technique for measuring
the full, time-dependent intensity I(¢) and phase ¢(2), i.e.,
the full complex electric field E(¢) of an individual femto-
second pulse. For many years, however, only partial mea-
sures, such as the intensity autocorrelation, have been
available.*® Recently some progress in this search has
been made,”?® although all techniques remain experi-
mentally complex, and nearly all methods operate on a
multishot basis only and continue to yield only partial in-
formation, such as the intensity but not the phase, or vice
versa. The problem is difficult because durations of ultra-
short pulses are much less than the temporal resolution of
all available potential measuring devices. However, we
recently developed an intuitive and general technique that
achieves the measurement of the intensity and phase of an
arbitrary femtosecond pulse by using a simple and novel
experimental arrangement.?" It also does so for a single
laser pulse. The key to this development is the reduction
of the problem to a complex two-dimensional phase-
retrieval problem. It is our purpose in this paper to de-
scribe the technique briefly and then to treat in detail the
iterative-Fourier-transform phase-retrieval algorithm
that we use to obtain the pulse intensity and phase from
the experimental trace. The algorithm is unique in that,
whereas a support constraint is available, it uses instead
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an apparently more powerful constraint that follows from
the known mathematical form of the signal function.
This constraint results solely from knowledge of the non-
linear-optical interaction and involves no assumptions
regarding the pulse. We show that the algorithm is quite
robust, achieving convergence quickly in a wide range of
cases. We also discuss important details of the algorithm’s
operation with theoretical and experimental examples.

2. FREQUENCY-RESOLVED OPTICAL
GATING: BASIC CONCEPTS

Our pulse-measurement technique, which we call
frequency-resolved optical gating (FROG),**-*' requires
splitting the pulse to be measured into two variably de-
layed replicas. The two pulse replicas are then crossed
in any instantaneously responding nonlinear-optical me-
dium. An optical-gate arrangement in an optical-Kerr
medium, such as that shown in Fig. 1, is ideal. In this
case the resulting signal-pulse electric field is given by

Eg(t,7) o« E@|E® — 7)[%. eh)

The spectrum of the signal pulse is then measured as a
function of the delay between the two input pulses. The
measured signal Irgog, or FROG trace, is thus a function
of frequency w and delay r:

2

j ) E; (¢, exp(—iwt)de| . (2)

Ivpoc(w, 7) =

Such a measurement is easily made on a single-shot basis
by focusing each beam with a cylindrical lens to a line
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Fig. 1. (a) FROG involves splitting the pulse and overlapping
the two resulting pulse replicas E(f) and E(¢ — 7) in an in-
stantaneously responding nonlinear-optical medium. In this
polarization-gating arrangement the probe pulse E(#) passes
through crossed polarizers and is gated at the nonlinear-optical
sample medium by the gate pulse E( — 7). The signal pulse is
then spectrally resolved, and its intensity is measured versus fre-
quency » and delay 7. A single-shot beam geometry is shown
here: each replica of the pulse is focused with a cylindrical lens
to a line in the sample medium. A large beam angle is used so
that delay varies spatially across the sample. The line focus at
the sample medium is then imaged onto the entrance slit of the
spectrometer with a spherical lens. Thus delay varies along the
slit, and, after dispersion by the spectrometer, frequency varies
along the dimension perpendicular to the slit. The FROG trace
is the output intensity versus wavelength and delay as seen by the
camera. (b) Schematic of the polarization-optical-gate FROG
interaction of two Gaussian pulses. The signal pulse is also
Gaussian and is centered at the time 27/3. Because the signal
pulse’s phase is contributed entirely by E(¢) [E(t — 1) appears as
the squared magnitude], the signal pulse will reflect the instanta-
neous frequency of E(¢) at the time 27/3. For complex phase de-
pendences, when the instantaneous frequency is an inappropriate
description of the pulse phase, the signal pulse reflects the short-
time spectrum of the probe pulse.

focus in the nonlinear-optical medium and imaging the
signal beam onto the entrance slit of a spectrometer (see
Fig. 1). Whether it is acquired on a single shot or many
shots, the FROG trace can be considered a spectro-
gram®?-38 of the field E(¢):

2

Se(w, 1) = f E®gt — nexp(—iwt)ds 3)

with variable-delay gate g(¢ — 7) = |E¢ — 7|2 We will
not utilize this fact, however, because inversion algorithms
for spectrograms generally require knowledge of the gate
function,®® which we do not possess here. On the other
hand, it is well known that the spectrogram is an ex-
tremely intuitive mathematical method for displaying a
function. Indeed, the spectrogram of an acoustic wave is
often used to display the acoustic wave, despite the avail-
ability of the actual pressure versus time data.”* Analo-
gously, we may conclude that the FROG trace is a similarly
intuitive method for displaying an ultrashort pulse (see
Figs. 2 and 3). And conveniently, for an ultrashort pulse,
the FROG trace is directly and easily obtained experimen-
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tally, as shown above, whereas the full intensity and phase
are at present impossible to obtain directly.

3. FREQUENCY-RESOLVED OPTICAL
GATING AS A COMPLEX TWO-DIMENSIONAL
PHASE-RETRIEVAL PROBLEM

We now show that the full pulse field is essentially
uniquely determined by the FROG trace, even for patho-
logical pulse shapes and/or phases, by reducing the
problem of inverting the FROG trace to a complex two-
dimensional phase-retrieval problem. We first note that it
is straightforward to obtain E(¢) from E,(¢, 7) [this will be
shown rigorously below; see relation (5)]. Thus, to solve
the inversion problem, it is sufficient to be able to deter-
mine Egg (¢, 7) from the FROG trace. To do this we rewrite
relation (2) in terms of E,,(¢ ), the one-dimensional
Fourier transform of E;,(z, 7) with regard to the delay vari-
able 7. In terms of this new quantity we find that

2

f f Egyt, exp(—int — iQNdtdQ| , @

— v -

Ippog(w,7)

which is indeed a two-dimensional phase-retrieval problem.
At first glance, such a problem appears unsolvable because
much information appears to be lost when the squared
magnitude is taken. This is, of course, the case for one-
dimensional phase-retrieval problems,?” such as that of
trying to find a light pulse’s intensity and phase from its
spectrum (a well-known unsolvable problem). Two- and
higher-dimensional phase-retrieval problems, however,
have been known for a decade to yield essentially unique
results.®* It is thus the case that unique solutions for
Eqx(t, Q) exist in essentially all cases. A constant phase
factor and a translation in time remain ambiguous but are
of no interest (see Appendix A). Thus, because E(¢) can
be obtained easily from E,(¢ ), we conclude that the
FROG trace essentially uniquely determines the pulse in-
tensity and phase.

In addition, phase-retrieval algorithms have been devel-
oped to find these solutions.’®*?-*" Unfortunately, solu-
tions to the two-dimensional phase-retrieval problem can
be difficult to find unless a sufficiently strong constraint
exists to assist convergence.’-** Indeed, the complex
version of this problem requires an even stronger con-
straint.*>*” Support constraints are usually used in
phase-retrieval problems, and a large body of literature
exists describing the use of support constraints in phase
retrieval of real positive images.**** A few researchers
have discussed the use of support constraints in complex
phase-retrieval problems, finding that convergence occurs
only in specific cases, such as when the support is con-
fined to separate, nonoverlapping regions.®** In FROG a
support constraint can be obtained from the third-order
intensity autocorrelation function [ I(#)I%(¢ — 7)d¢, which
is obtained by computing [ Irgog(w, 7)dw. We use, however,
a different and, as we show below, more powerful con-
traint: the known mathematical form of the signal field
Eg,(t, 1) « E(®)|E(¢ — 7)|%, which yields the relation

B@) = [ Bt v, ®)

where the proportionality constant is the reciprocal of the
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Fig. 2. FROG traces for negatively chirped, unchirped, and positively chirped Gaussian pulses. The top figures show the instantaneous
frequency versus delay curves for the pulses. Note that the FROG trace reflects the instantaneous frequency of the pulse in all cases.
Here the FROG traces are shown as density plots, with black indicating high intensity and white indicating low intensity.
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Fig. 3. Theoretical instantaneous frequencies versus time, spectra, and FROG traces for self-phase-modulated pulses: (a) a weakly
self-phase-modulated pulse (@ = 3), (b) a strongly self-phase-modulated pulse (@ = 8). Note that for the weakly self-phase-modulated
pulse the FROG trace visually displays the pulse’s instantaneous frequency versus time. For the strongly self-phase-modulated pulse the
FROG trace also visually displays the pulse’s instantaneous frequency versus time if the mean wavelength is computed for each delay.
The additional structure in the latter trace indicates the breakup of the spectrum because of self-phase modulation (SPM). Spectrograms
of such pulses are similar to these traces when similar-length windows are used.
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quantity [|E()|%dr’, which is simply proportional to the
pulse energy, a constant, independent of time. Thus an
estimate for E,,(¢, ) immediately gives an estimate for
E(¢) by means of relation (5), which can then be used to
give a new estimate for E,,(¢, 7) through relation (1). This
process is convenient; it generates both the next-iteration
value of the pulse field E(¢) and the next-iteration value of
the signal field E;,(¢, 7) that satisfies the mathematical-
form constraint.

We have implemented a simple iterative-Fourier-
transform algorithm analogous to iterative-Fourier-
transform algorithms that are used in image science.*>
We work with E, (¢, 7) and one-dimensional Fourier trans-
forms, however, rather than using a two-dimensional
iterative-Fourier-transform routine with Eg, (¢, Q). The
reason for this involves the constraint. In the two-
dimensional case the above constraint would have to be
written in terms of E,,(¢,Q), and it would become
E(t) x Egg(t,Q2 = 0). This two-dimensional implementa-
tion, however, would be wasteful in some sense because
the constraint does not utilize the full two-dimensional
field E,(z,Q); it uses only the set of values with = 0.
On the other hand, a one-dimensional Fourier-transform
algorithm, in conjunction with the integration of rela-
tion (5), is equivalent to the two-dimensional implementa-
tion with the form of the constraint E(t) « Eg (£, Q = 0)
because the integral of a function is its Fourier transform
evaluated at zero. Thus one-dimensional Fourier trans-
forms appear sufficient.

Like other iterative-Fourier-transform routines, ours
involves Fourier transforming back and forth between
domains. In our one-dimensional implementation we
Fourier transform between E,(¢, 7) and Eg.(w,7) (see
Fig. 4). As is also commonly done in iterative-Fourier-
transform algorithms, in the w domain we replace the
magnitude of the kth iteration of the signal field with the
square root of the data. Specifically, we replace the mag-
nitude of E$)(w, 7) with the square root of the measured
FROG trace Irpog(w, 7). In the ¢ domain we use the above
constraint. :

Specifically, our implementation of the above constraint
involves generating the (2 + 1)st iteration for Ey(4 ) by
first finding E**2(¢), the (¢ + 1)st iteration for E(), with
the use of relation (5):

E®(¢) = f E®@¢, 1)dr. 6)

We ignore the proportionality constant shown in rela-
tion (5) because we will normalize E**V(¢) at a later stage.
Using relation (1), we then construct E%;V (s, ), the

(k + Dst iteration for Eg (2, 7):
Egzgﬂ)(t’ 7 = E(kﬂ)(t)lE(kH)(t — 7,)|2' N

Thus from E# (¢, 1), the kth estimate for E(t, 7), we have
constructed a new estimate E%V(¢, 1), which is consistent
with the mathematical form of the nonlinear-optical inter-
action. In addition, the (¢ + 1)st estimate for the pulse
electric field, the desired quantity, is also provided by this
process.

We have no proof of convergence of this algorithm. In-
deed, we found that in practice both measures of the error

that we define below can increase with increasing iteration
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number, but in general the overriding tendency is for the
error to decrease. However, it is important to note that
the vast majority of practical phase-retrieval problems that
are currently being solved by available algorithms lack
convergence theorems. For example, one version of the
iterative-Fourier-transform algorithm, the error-reduction
version, has a convergence proof but performs much less
effectively in practice than does another version, the
hybrid-input-output version, for which no convergence
proof exists.***> Thus it is clear that the theoretical un-
derpinnings of all these methods require additional atten-
tion, but what is important in practice is the performance
of a technique rather than the existence of a convergence
proof for the specific problem. ‘

4. IMPLEMENTATION OF THE
ITERATIVE-FOURIER-TRANSFORM
ALGORITHM WITH MATHEMATICAL-FORM
CONSTRAINT

We wrote a FORTRAN-77 program on a time-shared Silicon
Graphics Indigo workstation that uses (Sandia public-
domain) statec fast-Fourier-transform subroutines. No
attempt was made to optimize the code. The program
requires ~1 s to perform each iteration for a FROG trace
consisting of 125 X 125 elements. For the initial guess in
the iteration we used a variety of pulse E fields, including
a constant field, approximately correct fields, deliberately
incorrect fields, and randomly generated noise for both the
intensity and the phase of the pulse. Additional features
of the program are discussed in Section 5.

To summarize, the program converged rapidly and reli-
ably in all the cases that we tried, except when large inten-
sity fluctuations occurred in the pulse. In the latter case
it is not clear whether stagnation occurred because in-
tensity fluctuations between points were too large (this
problem can be solved by using a larger point density)
or whether improvements must be made to the algorithm
for complex pulse intensities. In either case a number of
possible improvements are straightforward. In addition,
when convergence occurred to the given FROG trace, the
derived intensity and phase were always correct except for
a constant multiplicative phase factor or a translation in
time, the known trivial ambiguities (which are indeed
trivial in this problem).

Specifically, the first case that we discuss is a squarish
pulse, whose intensity is given by I(f) = exp(—#*). We took
this pulse to be positively linearly chirped, so that its phase
was given by ¢(#) = —at®. The instantaneous frequency

Egiglt,t) — E(t) = fEssg (t,7) dv — Egg(t,7) = E() [E(t-1)2

One-dimensional
Fourier transform
with respect to t

Inverse Fourier
transform with
respect to @

Replaco the magnitude of
Esig(m,’c) with ‘“FRQG((D,T)
Esig(mv") -

Esig(“):")

Fig. 4. Iterative-Fourier-transform algorithm for inverting a
FROG trace to obtain an ultrashort pulse’s intensity and phase.
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Fig. 5. Results of the algorithm after ten iterations for a squar-
ish pulse: the exact pulse intensity, the initial guess intensity,
and the derived pulse intensity.
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Fig. 6. Results of the algorithm after 20 iterations for a linearly
chirped Gaussian pulse: the exact pulse phase, the initial guess
phase, and the derived pulse phase.

of a field is given by w(f) = —dg/d¢, so this pulse’s instan-
taneous frequency was «(¢) = 2at. For this example we
used @ = 1. This pulse models a commonly encountered
ultrashort pulse resulting from propagation through a
self-phase-modulating medium with group-velocity dis-
persion. Such a pulse is useful because, by use of a pair of
diffraction gratings, it can be compressed essentially to
the transform limit.** The FROG trace of such a pulse is
approximately that of the positively chirped pulse shown
in Fig. 2. For an initial guess to the algorithm for this
pulse we used the correct phase but an incorrect intensity:
a Gaussian intensity of approximately the correct width
(see Fig. 5). We used N = 33, i.e., 33 temporal points de-
fined the intensity versus time. At the steepest part of
the pulse, intensity changes of ~20% occurred between
adjacent points. Despite these large intensity changes,
convergence to the correct intensity occurred rapidly, and
the correct phase was maintained. Figure 5 shows the
derived pulse intensity after ten iterations, where some
deviations between the derived and exact pulses remain,
but they are small and diminish rapidly with additional
iterations.

In a second example we used the correct intensity but a
deliberately incorrect phase. We took the exact pulse to
have a Gaussian intensity and linear chirp with o = 1.
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As an initial guess we used linear chirp, but of the oppo-
site sign, @ = —1, a particularly inaccurate initial guess.
In the wings the exact pulse and the initial guess differed
in phase by as much as 107. With N = 33, again conver-
gence occurred rapidly to the correct intensity and phase.
Figure 6 shows the derived phase after 20 iterations, indi-
cating excellent agreement. Interestingly, the derived
phase in the wings of the pulse was quite accurate despite
the low intensity there. In both these examples pulse
E-field accuracy of better than 0.1% was achieved in
<20 iterations.

The next two examples correspond to much more chal-
lenging problems. For our third example (see Fig. 7)
we took the exact pulse to be a Gaussian-intensity pulse
with a satellite pulse having 25% of the peak intensity
of the main pulse (50% of the peak field strength of
the main pulse) following it. In addition, we let the
pulse phase be dominated by SPM. SPM (in its sim-
plest manifestation) involves a phase ¢(f) = QI(¢) so that
() = —QdI/dt, where I(f) is normalized to have unity
peak magnitude.*® The @ parameter is the measure of the
strength of SPM. @ << 1 corresponds to a fairly weak
effect, whereas @ > m corresponds to a strong effect,
which involves spectral breakup* (see Fig. 3). In this
problem we allowed the exact pulse to have moderate

1 T T v T
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%’ 0.6} Initial guess: = Derived Intensity -
S constant Exact Intensity
2
E -
04r b
02 _
0 1 1
Time (arb units)
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0 T T T
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c L
o
" Initial guess: constant
-7t 1 i n " 1 1
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(b)
Tig. 7. Results of the algorithm for a Gaussian-intensity pulse
with a trailing satellite pulse each with some SPM (@ = 2.5):

(a) the exact pulse intensity and the derived pulse intensity,
(b) the exact pulse phase and the derived pulse phase.
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Fig. 8. Results of the algorithm for a severely self-phase-
modulated Gaussian-intensity pulse (@ = 8): (a) the exact pulse
intensity and the derived pulse intensity, (b) the exact pulse phase
and the derived pulse phase.

SPM, at setting @ = 2.5, We set N = 125, used a FWHM
for each pulse of 15 time increments, and separated the
pulse centers by 35 time increments. At the steepest part
of the pulse, intensity changes of ~10% occurred between
adjacent points. For this problem we used an inaccurate
initial guess: constant intensity and phase. Neverthe-
less convergence occurred to the correct intensity and
phase (except, of course, in the extreme wings of the pulse,
where the intensity is approximately zero and the phase
is indeterminate).

Finally, to test the algorithm further, we used a difficult
problem, a Gaussian-intensity pulse with severe SPM,
with @ = 8, as a fourth example (shown in Fig. 3). We
again set N = 125 and used a pulse-intensity FWHM of
15 time increments. In this case the phase of the pulse
changed drastically between time increments in the steep-
est part of the pulse—by ~1 rad. In principle, a smaller
time increment would be advised for such a run to reduce
these phase jumps. For the initial guess in this case we
used noise, i.e., random numbers for both the intensity
(between 0 and 1) and phase (between —7 and 7). Again
convergence to the correct intensity and phase occurred,
as is illustrated in Fig. 8.

We also tried pulses with significant variations in inten-
sity, such as double pulsing, in which each pulse had the
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same or nearly the same peak height. In such cases we
found that the algorithm tended to stagnate, producing
neither the correct FROG trace nor the correct intensity.
Interestingly, the derived pulse in such cases was actually
a double pulse, although the relative heights were wrong
by an order-unity factor. It is also interesting that the
phase was typically quite close to the exact result in all the
cases that we tried. We believe that, when such stagna-
tion occurs, examination of the pulse third-order intensity
autocorrelation (obtainable directly from the FROG trace)
should allow us to kick the E field in the correct direc-
tion. Other methods also exist, and we are currently
working on this problem. However, femtosecond-pulse
time-bandwidth products are not particularly large (laser
amplifiers have limited bandwidth, and these pulses are
extremely short), so we do not expect excessive intensity
structure in such pulses. Indeed, it is generally believed
that these pulses are more often plagued with slowly
varying phase structure, describable with a fairly low-
order polynomial expansion. In such cases our iterative-
Fourier-transform algorithm performs quite well.

5. CONVERGENCE PROPERTIES OF THE
ITERATIVE-FOURIER-TRANSFORM
ALGORITHM WITH MATHEMATICAL-FORM
CONSTRAINT

To discuss the convergence properties of the algorithm,
we must first define appropriate measures of the error be-
tween the actual and derived E fields and the actual and
derived FROG traces.

We define two measures of this error. For theoretical
simulations, in which the actual pulse E field is known, an
obvious measure of the error, which we will call the E-field
(rms) error, is

© 1 N X . 1/2
' = | 2IEY) - EQ | ®

J=1

where E(t;) is the exact E field at the time #, N is the
number of points in the vector defining the E field, and ¢
is the jth time in the time vector. e is a measure of the
accuracy of the derived pulse E field. It reveals phase as
well as amplitude deviations in the derived pulse E field.

Another measure of the error between the exact and
derived pulse fields that is useful in experimental situ-
ations when the exact pulse E field is unknown, as well as
in theoretical simulations, and that we will call the FROG-
trace (rms) error, is

1 N N 12

effhoc = {1—\,—2 > 2 U&oa(ws,m) - ImOG(wi,fj)]z} )
i=1 j=1

where I (w;, 7;) is the kth iteration for the FROG trace,

Irpog(w;, 75) is the measured FROG trace, and w; and 7; are

the ith frequency and the jth delay in the frequency and

delay vectors, respectively.

A zero value for ey’ obviously guarantees a zero value for
efoe, and the guaranteed uniqueness of the E field for a
given FROG trace implies the converse. Nevertheless we
treat the converse as a theory to be tested, at least initially.

In view of the trivial ambiguities, using these error mea-
sures requires that some normalizations and translations
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Fig. 9. Comparison of the two measures of error for the severely
self-phase-modulated pulse. Note that the FROG-trace rms error
decreases steadily, whereas the E-field rms error appears to stag-
nate. This occurs because the derived E field is slightly trans-
lated in time compared with the exact E field (see Fig. 8). Inall
the cases in which such discrepancies occurred we verified that
the cause is this translation. In general, because the FROG trace
essentially uniquely determines the E field, the FROG trace error
is a more reliable measure of error than is the E-field error.
(The discontinuities in the E-field error between iterations 20
and 30 are also the result of temporal translations.)

first be performed. For example, it will always be neces-
sary to translate E®(¢) appropriately and to normalize
the derived E field by an appropriate complex constant
to compute €. properly. As a result, in our computer pro-
gram we translate both E(t;) and E®(¢) so that their max-
ima occur at the central time (j = N/2 + 1/2; we use only
odd values of N). We normalize E(¢;) to have unity maxi-
mum, so that e corresponds to the percentage error in
E(@) per point. We also normalize the derived pulse field
on each iteration to minimize ey’. Normalizations are
important for the measured and derived FROG traces as
well. We normalize the measured Ipgog(w;, 7;) to have
unity maximum, so that e o corresponds to the percent-
age error per unit point. Finally, for e to make sense,
we also normalize I%c(w;, 7;) on each iteration to mini-
mize efayg. It is, of course, neither necessary nor appro-
priate to translate the exact or the derived FROG trace.

Translation of (i.e., centering) the E field proved useful
for another reason. Before implementation of this fea-
ture the derived E field had a tendency to drift in time,
apparently because nothing constrained it to remain in
one place. This drift hindered convergence somewhat.
(A support constraint could also have lessened this effect,
although centering proved quite effective.)

For experimental runs we define convergence to mean
e®e < m, where 7 is the percentage noise averaged over
the data. Experimental runs that we performed typically
had 7 = 1%, and convergence occurred in 30-100 iterations
for the approximately linearly chirped pulses we used.

For theoretical simulations we initially defined conver-
gence to mean e < 10™". This value also corresponds
roughly to the round-off error of single precision for the
values of N that we used. Typically, however, the field
error appeared to stagnate at a fairly large value (~1% to
10%), whereas the FROG-trace error achieved a very low
value (1077, indicating convergence. Figure 9 shows the
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values of these two measures of error for the highly self-
phase-modulated pulse, which illustrates this point. This
type of event is of concern because it could indicate the
presence of a low-probability ambiguity, such as in the
case of the spectrogram, in which the relative phase of
well-separated pulses is ambiguous® (see Appendix A).
Close examination of Fig. 8, however, shows that the
derived pulse intensity and phase are simply translated in
time by approximately one half of a time increment with
respect to the exact pulse intensity and phase, despite our
centering routine. Indeed, in all cases we found that this
effect was present because the derived pulse peak occurred
between adjacent time values, thus destroying the useful-
ness of e’ as a measure of Efield error. As a result we
were careful to verify that, in all the cases that we tried, a
low value of el yielded the correct E field although pos-
sibly translated slightly in time. In the future we plan to
implement an improved pulse-centering routine, but this
problem will probably always persist to some extent. For
the present we conclude that effayg is an appropriate error
measure for theoretical simulations as well as for experi-
mental runs. In any case, in practical usage the exact E
field will be unknown, and ey will be the only available
error measure (although an error could be defined in terms
of how well the constraint is satisfied). Fortunately efaog
appears to be adequate in all cases.

In practice we found that convergence to the 1077 level
in simulations typieally occurred in 100-200 iterations for
slowly varying pulses. FROG-trace errors of the order of
1% were typically achieved in 10-20 iterations. Conver-
gence occurred more slowly when the intensity changed
rapidly and/or the quality of the initial guess was poor.
Figure 10 shows the value of ey for the pulse-with-
satellite example from Section 4. Observe that little or
no progress was made in the first eight iterations, as might
be expected from our deliberately bad choice of initial
guess of constant intensity and phase for this rapidly vary-
ing (both in intensity and phase) pulse. Nevertheless,
after this inauspicious beginning, the algorithm converged
fairly rapidly. Interestingly, after iteration 20 or so, the
error decreased approximately exponentially until round-
off error became important.
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for the severely self-phase-modulated Gaussian-intensity pulse
for various initial guesses. Observe that noise yields the fastest
convergence.

We also studied the value of initial guesses in producing
convergence. Figure 11 shows the FROG-trace error ver-
sus iteration number for the highly self-phase-modulated
pulse from Section 4 with the use of three different types
of initial guess. Specifically, we used constant intensity
and phase, a short pulse of constant phase (with a pulse
length that was slightly shorter than that of the actual
pulse), and noise. We expected that the constant would be
a poor initial guess, and it is, yielding slow convergence.
Interestingly, the short pulse did no better. It is surpris-
ing that noise performed best, yielding convergence in
about half the time that was required by the other types of
initial guess. Noise performed well in other simulations
that we ran, and only a highly accurate initial guess out-
performed it. This result is in agreement with the per-
formance of iterative-Fourier-transform routines that are
used in image science, in which noise is the initial guess
of choice.*®

We also included in our program the possible use of a
support constraint as well as the mathematical-form con-
straint. Whereas an automated procedure can be devel-
oped for determining the appropriate support from the
FROG trace, as mentioned above, our implementation at
this stage consisted simply of inputting a support for the
pulse according to taste. We tried using both tight and
loose support constraints but were not able to improve con-
vergence in any case. Indeed, the use of a support con-
straint, in addition to the mathematical-form constraint,
appeared to slow convergence on a few occasions. We also
incorporated the hybrid-input-output form* of the support
constraint and had similar experience with it. However,
these statements should be considered preliminary at
present because we have not fully evaluated this feature
of the program.

The mathematical-form constraint was applied rigor-
ously in all the cases. Some attempts were made to use
an analogous version of this constraint incorporating the
concept of a hybrid-input-output algorithm,*® in which the
constraint is not rigorously applied. In other words only
some percentage of the change in the field indicated by the
constraint is actually made in the field. Our implementa-
tion of this feature was as follows:
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E*D@) = B[wa E&t, ’T)d’T] + 1 - BE®®, (10

where B is a parameter between 0 and 1 and C is a
normalization constant that ensures that the two terms
have equal maximum values before multiplication by the
B-dependent factors. In our experience this also did not
speed convergence, although this statement should be con-
sidered preliminary as well.

We also ran this algorithm on FROG traces with noise
artificially included to test its robustness in more realistic
situations. In these preliminary runs, even 10% (multi-
plicative) noise did not seriously alter the algorithm’s abil-
ity to achieve convergence to the essentially correct pulse
intensity and phase. We believe that this success is due to
the averaging and smoothing effect of the constraint,
which involves an integration [Eq. (6)]. Such averaging is
not characteristic of other phase-retrieval problems. A
more detailed discussion of FROG in the presence of noise
is being prepared.

6. EXPERIMENT

Before we describe our experimental apparatus we must
mention an additional requirement of the algorithm that
especially pertains to its use with experimental data. Be-
cause of the use of the mathematical-form constraint,
which mixes time and delay axes [see Eq. (7)], implemen-
tation of the iterative-Fourier-transform algorithm re-
quires the use of a frequency spacing of the points of
8v = (N87)7', where N is the number of points per row and
87 is the delay increment. In view of this result it is im-
portant either to calibrate the scales in advance of the ex-
periment or to rescale data before running the algorithm.
In our experiments, typically an excess of spectral data
was collected, and either spectral points were thrown away
or a weighted average was taken of groups of points.

Our apparatus consisted of a cw-pumped, Rhodamine 6G,
colliding-pulse mode-locked dye laser that produced pulses
of <100 fs at a wavelength of 620 nm and a repetition rate
of ~100 MHz and a 10-Hz Nd: YAG-pumped four-stage dye
amplifier that amplified these pulses to an energy of
~200 ud. Dispersion compensation using four SF-10
prisms could compress the resulting positively chirped
~300-fs pulses to ~100 fs. Spatial filtering produced a
TEMg, beam, eliminating the need for performing a com-
plex normalization of the experimental trace. A beam
splitter and a neutral-density filter yielded two pulses of a
few microjoules each. A cylindrical lens of ~1-m focal
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Fig. 12. Experimental single-shot FROG trace for a linearly
chirped pulse.
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length focused the two beams, which crossed at an angle
of ~20°, yielding a range of delays of ~1.2 ps. The elec-
tronic Kerr effect in a 83-mm-thick BK-7 window placed at
the focus of these two beams provided signal light with
~107* efficiency. The peak intensity at the BK-7 was
~10 GW/em? (an intensity for which we verified an ap-
proximately cubic dependence of diffracted energy versus
input energy). We also observed negligible spectral broad-
ening and small-scale self-focusing caused by the medium.
We calculate that the effects of group-velocity dispersion
resulting from the optics and sample medium were negli-
gible at ~620 nm. The diffracted beam was focused onto
the 50-um slits of a 1/4-m Chomex imaging spectrometer.
A Photometrics charge-coupled-device camera collected
the dispersed light in a single shot. The signal intensity
versus wavelength and delay, i.e., the FROG trace, was
then recorded with a Macintosh Ilci microcomputer.

Figure 12 shows the experimental FROG trace for a
pulse that has been partially recompressed, which we ex-
pect to be somewhat positively linearly chirped (although
less chirped than on emerging from the amplifier). Visual
examination of the FROG trace easily reveals a pulse of
the order of 100 fs in duration with a positive wavelength
chirp (cf. Fig. 2) over the range of delays that we used.
Indeed, use of the algorithm on the 125 X 125 array of
data points yields a pulse ~110 fs (see Fig. 13) in length
(FWHM) with an inverted parabolic phase evolution (see
Fig. 14), indicative of a positive linear chirp, as discussed
above. Noise was used as the initial guess for this itera-
tion, and convergence occurred in 50 iterations. [As are-
sult of the definition that we are using, convergence occurs
more quickly when data are employed than in the simula-
tions discussed above because the convergence condition
here is determined by experimental noise rather than by
computer round-off error and is necessarily less stringent:
here the convergence condition is efpog < ~1%. Actually
we simply let the computer run and took the field that pro-
duced the lowest value of eXys. We found that in experi-
mental runs the value of efaye would reach a minimum
and then begin to increase, oscillating up and down
slightly above the best value. These oscillations rarely
produced a better result, however.] The final value for
e for this data set was 0.5%, in reasonable agreement
with the actual noise in the data. A check of these results
is provided by Fig. 15, which shows the experimentally
measured and the numerically derived third-order in-
tensity autocorrelations for this pulse. The measured
autocorrelation trace was obtained by integrating the
measured FROG trace over frequency for each value of
delay. This is not an ideal check of our derived results
because it relies on data that are themselves used in the
iteration; however, in view of the impossibility of measur-
ing the pulse intensity and phase on a single shot in some
other manner, it is reasonable.

We also measured longer pulses with some ringing in the
trailing edge. For these pulses the algorithm converged
quickly, and third-order autocorrelations indicate good
fits in these cases also.

7. CONCLUSIONS

In conclusion, we have developed an iterative-Fourier-
transform algorithm to extract the intensity and phase
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evolution of a single ultrashort pulse from frequency-
resolved optical-gating data. This algorithm is unique in
its use of a constraint derived from the known mathemati-
cal form of the signal field that we obtained in the experi-
ment. It makes no assumptions regarding the pulse field
and is quite general. Theoretical simulations and experi-
mental data reveal fairly robust performance for the al-
gorithm, even for pulses with complex phase behavior or
pulses in the presence of noise.

APPENDIX A: AMBIGUITIES IN
FREQUENCY-RESOLVED-OPTICAL-GATING
MEASUREMENTS

It is important to give a more rigorous discussion of the
ambiguities in FROG measurements. Phase retrieval is
known to possess trivial ambiguities. If Eg,(x, y) is the
correct solution, then additional ambiguous solutions can
also result*3:

(1)  Egg(x,y) exp(ip,), where ¢, is a constant;

(2) Egg(x — x0,¥ — yo), where x4 and y, are
constants;

@) Eg*(—x,—y).

Despite their name, it is important to verify that these
ambiguities lead in fact only to trivial and insignificant
ambiguities in the pulse field. The first two ambiguities
yield, respectively, an arbitrary constant phase factor and
an arbitrary shift in time to the pulse field, which are of
no concern in ultrashort-pulse measurement,; i.e., they are
not physically significant. The third ambiguity above is
not consistent with the mathematical-form constraint and
therefore cannot result.

Other ambiguities result only by chance, depending on
the precise data, and are exceedingly unlikely.3840-43

We should also mention that the spectrogram is known
to have an additional ambiguity: the relative phase of
well-separated pulses in a multiple-pulse field.®®* To see
this let Sg(w, 7) be the spectrogram of the function E(¢). If
E(t) = Ey(t) + E,(t), in which these two component fields
are well separated in time (i.e., by much more than the
window duration), then Sg(w, 7) = Sg,(w,7) + Sg,(0, 7) be-
cause the cross terms are zero. Since the spectrogram is
a squared magnitude, the relative phase of the two fields
is ambiguous. FROG, on the other hand, has cross terms
that are not present in the spectrogram because in FROG
the gate is essentially the pulse itself and is always as
broad in time as the pulse to be measured. Thus FROG
avoids the only known physically significant ambiguity of
the spectrogram.

Finally we should also mention that use of second-
harmonic generation (SHG) as the FROG nonlinearity
yields an ambiguity in the direction of time. To see this
we write the SHG FROG signal as

2

. (A1)

HG
ISs(w,7) =

j E@®)E¢ — nexp(—iwt)dt

Performing a simple change of variables, ' = ¢ — 7, and
dropping the primes, we find that

2

. (A2)

I gggG (w; T) =

f E®EQR + nexp(—iot)dt
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Thus the SHG FROG signal is always symmetrical in the
delay variable 7. As a result it will not be possible to dis-
tinguish the direction of time for the pulse. In addition,
other ambiguities are likely to be present. Nevertheless,
SHG FROG may have some applications. (Note: This
appendix also appeared in Ref. 29, where we discussed
FROG with the use of a different beam geometry and
without the use of an iterative phase-retrieval algorithm.)
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